Patents by Inventor Cédric Alain Marie FOURNET

Cédric Alain Marie FOURNET has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240160795
    Abstract: A peripheral device, for use with a host, comprises one or more compute elements a security module and at least one encryption unit. The security module is configured to form a trusted execution environment on the peripheral device for processing sensitive data using sensitive code. The sensitive data and sensitive code are provided by a trusted computing entity which is in communication with the host computing device. The at least one encryption unit is configured to encrypt and decrypt data transferred between the trusted execution environment and the trusted computing entity via the host computing device. The security module is configured to compute and send an attestation to the trusted computing entity to attest that the sensitive code is in the trusted execution environment.
    Type: Application
    Filed: January 22, 2024
    Publication date: May 16, 2024
    Inventors: Stavros VOLOS, David Thomas CHISNALL, Saurabh Mohan KULKARNI, Kapil VASWANI, Manuel COSTA, Samuel Alexander WEBSTER, Cédric Alain Marie FOURNET, Richard OSBORNE, Daniel John Pelham WILKINSON, Graham Bernard CUNNINGHAM
  • Publication number: 20240086542
    Abstract: In various examples there is a computing device comprising: a first microcontroller comprising a first immutable bootloader and first mutable firmware. The first immutable bootloader uses a unique device secret burnt into hardware of the computing device in order to generate an attestation of the first mutable firmware. The computing device has a second microcontroller. There is second mutable firmware at the second microcontroller. There is a second immutable bootloader at the second microcontroller which sends a measurement of the second mutable firmware to the first immutable bootloader whenever the second microcontroller restarts, such that the first microcontroller is able to include the measurement in the attestation.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Inventors: Stavros VOLOS, Colin DOAK, Simon Douglas CHAMBERS, David RUGGLES, Richard NEAL, Cedric Alain Marie FOURNET, Kapil VASWANI, Balaji VEMBU
  • Patent number: 11921911
    Abstract: A peripheral device, for use with a host, comprises one or more compute elements a security module and at least one encryption unit. The security module is configured to form a trusted execution environment on the peripheral device for processing sensitive data using sensitive code. The sensitive data and sensitive code are provided by a trusted computing entity which is in communication with the host computing device. The at least one encryption unit is configured to encrypt and decrypt data transferred between the trusted execution environment and the trusted computing entity via the host computing device. The security module is configured to compute and send an attestation to the trusted computing entity to attest that the sensitive code is in the trusted execution environment.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: March 5, 2024
    Assignee: Microsoft Technology Licensing, LLC.
    Inventors: Stavros Volos, David Thomas Chisnall, Saurabh Mohan Kulkarni, Kapil Vaswani, Manuel Costa, Samuel Alexander Webster, Cédric Alain Marie Fournet, Richard Osborne, Daniel John Pelham Wilkinson, Graham Bernard Cunningham
  • Patent number: 11853429
    Abstract: In various examples there is a computing device comprising: a first microcontroller comprising a first immutable bootloader and first mutable firmware. The first immutable bootloader uses a unique device secret burnt into hardware of the computing device in order to generate an attestation of the first mutable firmware. The computing device has a second microcontroller. There is second mutable firmware at the second microcontroller. There is a second immutable bootloader at the second microcontroller which sends a measurement of the second mutable firmware to the first immutable bootloader whenever the second microcontroller restarts, such that the first microcontroller is able to include the measurement in the attestation.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: December 26, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Stavros Volos, Colin Doak, Simon Douglas Chambers, David Ruggles, Richard Neal, Cédric Alain Marie Fournet, Kapil Vaswani, Balaji Vembu
  • Publication number: 20230342121
    Abstract: A processing system comprising one or more chips, each comprising a plurality of tiles is described. Each tile comprises a respective processing unit and memory, the memory storing a codelet. The processing system has at least one encryption unit configured to encrypt and decrypt data transferred between the tiles and a trusted computing entity via an external computing device. The codelets are configured to instruct the tiles to transfer the encrypted data by reading from and writing to a plurality of memory regions at the external memory such that a plurality of streams of encrypted data are formed, each stream using an individual one of the memory regions at the external computing device.
    Type: Application
    Filed: July 13, 2021
    Publication date: October 26, 2023
    Inventors: Daniel John Pelham WILKINSON, Richard OSBORNE, Graham Bernard CUNNINGHAM, Kenneth GORDON, Samuel Alexander WEBSTER, Stavros VOLOS, Kapil VASWANI, Balaji VEMBU, Cédric Alain Marie FOURNET
  • Publication number: 20230020838
    Abstract: In various examples there is a computing device comprising: a first microcontroller comprising a first immutable bootloader and first mutable firmware. The first immutable bootloader uses a unique device secret burnt into hardware of the computing device in order to generate an attestation of the first mutable firmware. The computing device has a second microcontroller. There is second mutable firmware at the second microcontroller. There is a second immutable bootloader at the second microcontroller which sends a measurement of the second mutable firmware to the first immutable bootloader whenever the second microcontroller restarts, such that the first microcontroller is able to include the measurement in the attestation.
    Type: Application
    Filed: July 13, 2021
    Publication date: January 19, 2023
    Inventors: Stavros VOLOS, Colin DOAK, Simon Douglas CHAMBERS, David RUGGLES, Richard NEAL, Cédric Alain Marie FOURNET, Kapil VASWANI, Balaji VEMBU
  • Patent number: 11526613
    Abstract: A computer system has a separation mechanism which enforces separation between at least two execution environments such that one execution environment is a gatekeeper which interposes on all communications of the other execution environment. The computer system has an attestation mechanism which enables the gatekeeper to attest to properties of the at least two execution environments. A first one of the execution environments runs application specific code which may contain security vulnerabilities. The gatekeeper is configured to enforce an input output policy on the first execution environment by interposing on all communication to and from the first execution environment by forwarding, modifying or dropping individual ones of the communications according to the policy. The gatekeeper provides evidence of attestation both for the application specific code and the policy.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: December 13, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Thomas Chisnall, Cédric Alain Marie Fournet, Manuel Costa, Samuel Alexander Webster, Sylvan Clebsch, Kapil Vaswani
  • Publication number: 20220222348
    Abstract: In various examples there is a method of enabling an attestable update of a firmware layer that provides a unique identity of a computing device. The method comprises using an immutable firmware layer to access a unique device secret. The immutable layer is used to derive a hardware device identity (HDI) from the unique device secret. The immutable layer is used to derive a compound device identity (CDI) from a measurement of the firmware layer and the unique device secret. The CDI and HDI are made available to the firmware layer. The firmware layer is used to issue a local certificate to endorse a device identity key, derived from the CDI, the local certificate signed by a key derived from the HDI.
    Type: Application
    Filed: January 13, 2021
    Publication date: July 14, 2022
    Inventors: Kapil VASWANI, Cédric Alain Marie FOURNET, Stavros VOLOS
  • Publication number: 20220019700
    Abstract: A system and method for encrypting and decrypting data exchanged between a multi-tile processing unit and a storage, where a plurality of keys are used for the encryption. Each of the plurality of keys is associated with a different one or more sets of the processors. Encryption hardware is configured to select a key to use for encryption/decryption operations in dependence upon the set of tiles associated with the data being exchanged. Each write request from a tile contains identifier bits associated with that tile's set of tiles, enabling the encryption hardware to select the key to use for encrypting the data in the write request. Each read completion for a tile contains identifier bits associated with that tile's set of tiles, enabling the encryption hardware to select the key to use for decrypting the data in the read completion.
    Type: Application
    Filed: July 13, 2021
    Publication date: January 20, 2022
    Inventors: Daniel John Pelham WILKINSON, Graham Bernard CUNNINGHAM, Stavros VOLOS, Kapil VASWANI, Cedric Alain Marie FOURNET, Balaji VEMBU
  • Publication number: 20210342492
    Abstract: A peripheral device, for use with a host, comprises one or more compute elements a security module and at least one encryption unit. The security module is configured to form a trusted execution environment on the peripheral device for processing sensitive data using sensitive code. The sensitive data and sensitive code are provided by a trusted computing entity which is in communication with the host computing device. The at least one encryption unit is configured to encrypt and decrypt data transferred between the trusted execution environment and the trusted computing entity via the host computing device. The security module is configured to compute and send an attestation to the trusted computing entity to attest that the sensitive code is in the trusted execution environment.
    Type: Application
    Filed: July 13, 2021
    Publication date: November 4, 2021
    Inventors: Stavros VOLOS, David Thomas CHISNALL, Saurabh Mohan KULKARNI, Kapil VASWANI, Manuel COSTA, Samuel Alexander WEBSTER, Cédric Alain Marie FOURNET, Richard OSBORNE, Daniel John Pelham WILKINSON, Graham Bernard CUNNINGHAM
  • Patent number: 11126757
    Abstract: A peripheral device, for use with a host, comprises one or more compute elements a security module and at least one encryption unit. The security module is configured to form a trusted execution environment on the peripheral device for processing sensitive data using sensitive code. The sensitive data and sensitive code are provided by a trusted computing entity which is in communication with the host computing device. The at least one encryption unit is configured to encrypt and decrypt data transferred between the trusted execution environment and the trusted computing entity via the host computing device. The security module is configured to compute and send an attestation to the trusted computing entity to attest that the sensitive code is in the trusted execution environment.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: September 21, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Stavros Volos, David Thomas Chisnall, Saurabh Mohan Kulkarni, Kapil Vaswani, Manuel Costa, Samuel Alexander Webster, Cédric Alain Marie Fournet
  • Publication number: 20210004469
    Abstract: A computer system has a separation mechanism which enforces separation between at least two execution environments such that one execution environment is a gatekeeper which interposes on all communications of the other execution environment. The computer system has an attestation mechanism which enables the gatekeeper to attest to properties of the at least two execution environments. A first one of the execution environments runs application specific code which may contain security vulnerabilities. The gatekeeper is configured to enforce an input output policy on the first execution environment by interposing on all communication to and from the first execution environment by forwarding, modifying or dropping individual ones of the communications according to the policy. The gatekeeper provides evidence of attestation both for the application specific code and the policy.
    Type: Application
    Filed: July 3, 2019
    Publication date: January 7, 2021
    Inventors: David Thomas CHISNALL, Cédric Alain Marie FOURNET, Manuel COSTA, Samuel Alexander WEBSTER, Sylvan CLEBSCH, Kapil VASWANI
  • Publication number: 20200125772
    Abstract: A peripheral device, for use with a host, comprises one or more compute elements a security module and at least one encryption unit. The security module is configured to form a trusted execution environment on the peripheral device for processing sensitive data using sensitive code. The sensitive data and sensitive code are provided by a trusted computing entity which is in communication with the host computing device. The at least one encryption unit is configured to encrypt and decrypt data transferred between the trusted execution environment and the trusted computing entity via the host computing device. The security module is configured to compute and send an attestation to the trusted computing entity to attest that the sensitive code is in the trusted execution environment.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 23, 2020
    Inventors: Stavros VOLOS, David Thomas CHISNALL, Saurabh Mohan KULKARNI, Kapil VASWANI, Manuel COSTA, Samuel Alexander WEBSTER, Cédric Alain Marie FOURNET