Patents by Inventor C. Glen Wensley

C. Glen Wensley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11658333
    Abstract: In accordance with at least certain embodiments, the present invention is directed to novel, improved, coated, or treated separator membranes, separators or membrane based separators for lithium batteries. The membranes or separators may include non-woven layers, improved surfactant treatments, or combinations thereof. The separators or membranes are useful for solvent electrolyte lithium batteries, especially rechargeable lithium ion batteries, and provide improved performance, wettability, cycling ability, and/or recharging efficiency.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: May 23, 2023
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, C. Glen Wensley, Stefan Reinartz
  • Patent number: 11283135
    Abstract: A membrane includes a porous membrane or layer made of a polymeric material having a plurality of surface treated (or coated) particles (or ceramic particles) having an average particle size of less than about 1 micron dispersed therein. The polymeric material may be selected from the group consisting of polyolefins, polyamides, polyesters, co-polymers thereof, and combinations thereof. The particles may be selected from the group consisting of boehmite (AlOOH), SiO2, TiO2, Al2O3, BaSO4, CaCO3, BN, and combinations thereof, or the particles may be boehmite. The surface treatment (or coating) may be a molecule having a reactive end and a non-polar end. The particles may be pre-mixed in a low molecular weight wax before mixing with the polymeric material. The membrane may be used as a battery separator.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: March 22, 2022
    Assignee: Celgard, LLC
    Inventors: C. Glen Wensley, Lie Shi
  • Publication number: 20210367308
    Abstract: In accordance with at least selected embodiments, novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, methods of making such membranes or substrates, separators, and/or batteries, and/or methods of using such membranes or substrates, separators and/or batteries are disclosed. In accordance with at least certain embodiments, novel or improved microporous membranes, battery separator membranes, separators, energy storage devices, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are disclosed. In accordance with at least certain selected embodiments, a separator for a battery which has an oxidation protective and binder-free deposition layer which is stable up to 5.2 volts or more, for example, up to 7 volts, in a battery is disclosed.
    Type: Application
    Filed: July 27, 2021
    Publication date: November 25, 2021
    Inventors: Lie Shi, C. Glen Wensley, Zhengming Zhang, Katharine Chemelewski, Junqing Ma, Ronnie E. Smith, Kwantai Cho, Weifeng Fang, Changqing Wang Adams, Ian McCallum, Jun Nada, Shante P. Williams, Jacob S. Mangum
  • Patent number: 11094995
    Abstract: In accordance with at least selected embodiments, novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, methods of making such membranes or substrates, separators, and/or batteries, and/or methods of using such membranes or substrates, separators and/or batteries are disclosed. In accordance with at least certain embodiments, novel or improved microporous membranes, battery separator membranes, separators, energy storage devices, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are disclosed. In accordance with at least certain selected embodiments, a separator for a battery which has an oxidation protective and binder-free deposition layer which is stable up to 5.2 volts or more, for example, up to 7 volts, in a battery is disclosed.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: August 17, 2021
    Assignee: Celgard, LLC
    Inventors: Lie Shi, C. Glen Wensley, Zhengming Zhang, Katharine Chemelewski, Junqing Ma, Ronnie E. Smith, Kwantai Cho, Weifeng Fang, Changqing Wang Adams, Ian McCallum, Jun Nada, Shante P. Williams, Jacob S. Mangum
  • Publication number: 20210050618
    Abstract: Disclosed or provided are high melt temperature microporous Lithium-ion rechargeable battery separators, shutdown high melt temperature battery separators, battery separators, membranes, composites, and the like that preferably prevent contact between the anode and cathode when the battery is maintained at elevated temperatures for a period of time, methods of making, testing and/or using such separators, membranes, composites, and the like, and/or batteries, Lithium-ion rechargeable batteries, and the like including one or more such separators, membranes, composites, and the like.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 18, 2021
    Inventors: C. Glen Wensley, Carlos R. Negrete, Jill V. Watson
  • Publication number: 20200350544
    Abstract: Disclosed or provided are non-shutdown high melt temperature or ultra high melt temperature microporous battery separators, high melt temperature separators, battery separators, membranes, composites, and the like that preferably prevent contact between the anode and cathode when the battery is maintained at elevated temperatures for a period of time and preferably continue to provide a substantial level of battery function (ionic transfer, discharge) when the battery is maintained at elevated temperatures for a period of time, methods of making, testing and/or using such separators, membranes, composites, and the like, and/or batteries, high temperature batteries, and/or Lithium-ion rechargeable batteries including one or more such separators, membranes, composites, and the like.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Inventors: Lie Shi, C. Glen Wensley, Jill W. Watson
  • Patent number: 10826108
    Abstract: Disclosed or provided are high melt temperature microporous Lithium-ion rechargeable battery separators, shutdown high melt temperature battery separators, battery separators, membranes, composites, and the like that preferably prevent contact between the anode and cathode when the battery is maintained at elevated temperatures for a period of time, methods of making, testing and/or using such separators, membranes, composites, and the like, and/or batteries, Lithium-ion rechargeable batteries, and the like including one or more such separators, membranes, composites, and the like.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: November 3, 2020
    Assignee: Celgard, LLC
    Inventors: C. Glen Wensley, Carlos R. Negrete, Jill V. Watson
  • Publication number: 20200343510
    Abstract: In accordance with at least certain embodiments, the present invention is directed to novel, improved, coated, or treated separator membranes, separators or membrane based separators for lithium batteries. The membranes or separators may include non-woven layers, improved surfactant treatments, or combinations thereof. The separators or membranes are useful for solvent electrolyte lithium batteries, especially rechargeable lithium ion batteries, and provide improved performance, wettability, cycling ability, and/or recharging efficiency.
    Type: Application
    Filed: July 7, 2020
    Publication date: October 29, 2020
    Inventors: Changqing Wang Adams, C. Glen Wensley, Stefan Reinartz
  • Patent number: 10741814
    Abstract: In accordance with at least certain embodiments, the present invention is directed to novel, improved, coated, or treated separator membranes, separators or membrane based separators for lithium batteries. The membranes or separators may include non-woven layers, improved surfactant treatments, or combinations thereof. The separators or membranes are useful for solvent electrolyte lithium batteries, especially rechargeable lithium ion batteries, and provide improved performance, wettability, cycling ability, and/or recharging efficiency.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: August 11, 2020
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, C. Glen Wensley, Stefan Reinartz
  • Patent number: 10720624
    Abstract: Disclosed or provided are non-shutdown high melt temperature or ultra high melt temperature microporous battery separators, high melt temperature separators, battery separators, membranes, composites, and the like that preferably prevent contact between the anode and cathode when the battery is maintained at elevated temperatures for a period of time and preferably continue to provide a substantial level of battery function (ionic transfer, discharge) when the battery is maintained at elevated temperatures for a period of time, methods of making, testing and/or using such separators, membranes, composites, and the like, and/or batteries, high temperature batteries, and/or Lithium-ion rechargeable batteries including one or more such separators, membranes, composites, and the like.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: July 21, 2020
    Assignee: Celgard, LLC
    Inventors: Lie Shi, C. Glen Wensley, Jill V. Watson
  • Publication number: 20190229319
    Abstract: A membrane includes a porous membrane or layer made of a polymeric material having a plurality of surface treated (or coated) particles (or ceramic particles) having an average particle size of less than about 1 micron dispersed therein. The polymeric material may be selected from the group consisting of polyolefins, polyamides, polyesters, co-polymers thereof, and combinations thereof. The particles may be selected from the group consisting of boehmite (AlOOH), SiO2, TiO2, Al2O3, BaSO4, CaCO3, BN, and combinations thereof, or the particles may be boehmite. The surface treatment (or coating) may be a molecule having a reactive end and a non-polar end. The particles may be pre-mixed in a low molecular weight wax before mixing with the polymeric material. The membrane may be used as a battery separator.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Inventors: C. Glen Wensley, Lie Shi
  • Patent number: 10249862
    Abstract: A membrane includes a porous membrane or layer made of a polymeric material having a plurality of surface treated (or coated) particles (or ceramic particles) having an average particle size of less than about 1 micron dispersed therein. The polymeric material may be selected from the group consisting of polyolefins, polyamides, polyesters, co-polymers thereof, and combinations thereof. The particles may be selected from the group consisting of boehmite (AlOOH), SiO2, TiO2, Al2O3, BaSO4, CaCO3, BN, and combinations thereof, or the particles may be boehmite. The surface treatment (or coating) may be a molecule having a reactive end and a non-polar end. The particles may be pre-mixed in a low molecular weight wax before mixing with the polymeric material. The membrane may be used as a battery separator.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: April 2, 2019
    Assignee: Celgard, LLC
    Inventors: C. Glen Wensley, Lie Shi
  • Publication number: 20170244089
    Abstract: A membrane includes a porous membrane or layer made of a polymeric material having a plurality of surface treated (or coated) particles (or ceramic particles) having an average particle size of less than about 1 micron dispersed therein. The polymeric material may be selected from the group consisting of polyolefins, polyamides, polyesters, co-polymers thereof, and combinations thereof. The particles may be selected from the group consisting of boehmite (AlOOH), SiO2, TiO2, Al2O3, BaSO4, CaCO3, BN, and combinations thereof, or the particles may be boehmite. The surface treatment (or coating) may be a molecule having a reactive end and a non-polar end. The particles may be pre-mixed in a low molecular weight wax before mixing with the polymeric material. The membrane may be used as a battery separator.
    Type: Application
    Filed: May 8, 2017
    Publication date: August 24, 2017
    Inventors: C. Glen Wensley, Lie Shi
  • Patent number: 9711771
    Abstract: A membrane includes a porous membrane or layer made of a polymeric material having a plurality of surface treated (or coated) particles (or ceramic particles) having an average particle size of less than about 1 micron dispersed therein. The polymeric material may be selected from the group consisting of polyolefins, polyamides, polyesters, co-polymers thereof, and combinations thereof. The particles may be selected from the group consisting of boehmite (AlOOH), SiO2, TiO2, Al2O3, BaSO4, CaCO3, BN, and combinations thereof, or the particles may be boehmite. The surface treatment (or coating) may be a molecule having a reactive end and a non-polar end. The particles may be pre-mixed in a low molecular weight wax before mixing with the polymeric material. The membrane may be used as a battery separator.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: July 18, 2017
    Assignee: Celgard, LLC
    Inventors: C. Glen Wensley, Lie Shi
  • Publication number: 20170025658
    Abstract: In accordance with at least selected embodiments, novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, methods of making such membranes or substrates, separators, and/or batteries, and/or methods of using such membranes or substrates, separators and/or batteries are disclosed. In accordance with at least certain embodiments, novel or improved microporous membranes, battery separator membranes, separators, energy storage devices, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are disclosed. In accordance with at least certain selected embodiments, a separator for a battery which has an oxidation protective and binder-free deposition layer which is stable up to 5.2 volts or more, for example, up to 7 volts, in a battery is disclosed.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 26, 2017
    Inventors: Lie Shi, C. Glen Wensley, Zhengming Zhang, Katharine Chemelewski, Junqing Ma, Ronnie E. Smith, Kwantai Cho, Weifeng Fang, Changqing Wang Adams, Ian McCallum, Jun Nada, Shante P. Williams, Jacob S. Mangum
  • Patent number: 9541302
    Abstract: Porous membrane contactors and/or their methods of manufacture and/or use are provided. In at least selected embodiments, the present invention is directed to flat panel hollow fiber or flat sheet membrane contactors and/or their methods of manufacture and/or use. In at least certain particular embodiments, the present invention is directed to hollow fiber array flat panel contactors, contactor systems, and/or their methods of manufacture and/or use. In at least particular possibly preferred embodiments, the contactor is adapted for placement in an air duct (such as an HVAC ductwork) and has a rectangular frame or housing enclosing at least one wound hollow fiber array or membrane bundle.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: January 10, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Gareth P. Taylor, Timothy D. Price, Amitava Sengupta, Paul A. Peterson, C. Glen Wensley
  • Publication number: 20160329541
    Abstract: In accordance with at least certain embodiments, the present invention is directed to novel, improved, coated, or treated separator membranes, separators or membrane based separators for lithium batteries. The membranes or separators may include non-woven layers, improved surfactant treatments, or combinations thereof. The separators or membranes are useful for solvent electrolyte lithium batteries, especially rechargeable lithium ion batteries, and provide improved performance, wettability, cycling ability, and/or recharging efficiency.
    Type: Application
    Filed: May 5, 2016
    Publication date: November 10, 2016
    Inventors: Changqing Wang Adams, C. Glen Wensley, Stefan Reinartz
  • Patent number: 9453805
    Abstract: The instant application relates to an X-ray sensitive battery separator for a secondary lithium battery and a method for detecting the position of a separator in a secondary lithium battery. The X-ray sensitive battery separator includes a microporous membrane having an X-ray detectable element therein, thereon, or added thereto. The X-ray detectable element constitutes less than 20% by weight of the microporous membrane or separator. The method for detecting the position of a separator in a battery, cell, stack, jellyroll, can, or the like includes the following steps: (1) providing a battery, cell, stack, jellyroll, or the like including an X-ray sensitive battery separator; (2) subjecting the battery, cell, stack, jellyroll, or the like to X-ray radiation; and (3) thereby detecting the position of said separator in said battery, cell, stack, jellyroll, or the like.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: September 27, 2016
    Assignee: Celgard, LLC
    Inventors: Xuefa Li, C. Glen Wensley, Zhengming Zhang
  • Publication number: 20160248066
    Abstract: In accordance with at least selected embodiments, the present disclosure or invention is directed to improved or novel separators, cells, batteries, and/or methods of manufacture and/or use. In accordance with at least certain embodiments, the present disclosure or invention is directed to improved or novel separators such as a separator for a high energy and/or high voltage lithium ion battery which is stable up to a 4.5 volt, or preferably up to a 5.0 volt or higher charging voltage, such as a novel or improved single or multilayer or multiply microporous separator membrane. In accordance with at least selected embodiments, the present application or invention is directed to novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, cells, methods of making such membranes or substrates, separators, cells, and/or batteries, and/or methods of using such membranes or substrates, separators, cells, and/or batteries.
    Type: Application
    Filed: February 25, 2016
    Publication date: August 25, 2016
    Inventors: Lie Shi, C. Glen Wensley, Ronnie E. Smith, Kwantai Cho, Edward Kruger
  • Patent number: 9274068
    Abstract: A method for detecting the position of a separator relative to electrodes in a secondary lithium battery includes the steps of: providing a secondary lithium battery including a positive electrode, a negative electrode, a X-ray sensitive separator located between the electrodes, and a can or pouch housing the electrodes and separator, the X-ray sensitive separator comprising a microporous membrane having a X-ray detectable element dispersed therein or thereon, the X-ray detectable element comprising at least 2 and no greater than 20 weight % of the membrane; subjecting the secondary lithium battery to X-ray radiation; determining the position of the separator relative to the electrodes; and approving or rejecting the secondary lithium battery based upon the position of the separator relative to the electrodes.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: March 1, 2016
    Assignee: Celgard LLC
    Inventors: Xuefa Li, C. Glen Wensley, Zhengming Zhang