Patents by Inventor Calvin Allan

Calvin Allan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8727996
    Abstract: A delivery device for implanting a medical device that includes an expandable fixation member adapted to fix the position of the medical device within a lumen of a human body. The delivery device has an inner shaft rotatably disposed in a tubular outer shaft. A retention member is secured to and rotatable with the inner shaft and has a free end and a retainer portion adapted to protrude outwardly through an exit aperture in the outer shaft to extend circumferentially about the exterior of the outer shaft. The fixation member of the medical device may be retained on the tubular shaft in a low profile configuration by the outwardly protruding retainer portion and may be released to expand upon retraction of the retainer portion in response to rotation of the inner shaft.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: May 20, 2014
    Assignee: Medtronic Vascular, Inc.
    Inventors: James Calvin Allan, Don Tran, Erik Griswold, Rudy Beasley, Arvind Srinivas
  • Publication number: 20130253347
    Abstract: In one example, this disclosure is directed to a kit for intravascular implantation of an implantable medical device within a patient comprising an elongated outer sheath forming an inner lumen with a distal opening, the outer sheath sized to traverse a vasculature of the patient, and an elongated inner sheath with a stopper. The inner sheath further includes a tether configured to form a loop on a distal side of the stopper, the loop being configured to engage a looped element of the implantable medical device to couple the implantable medical device to the inner sheath. The stopper is slidable relative to the outer sheath. The tether is configured to release the looped element of the implantable medical device from the inner sheath by opening the tether loop when a portion of the stopper is located distally relative to the distal opening of the outer sheath.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 26, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: Erik C. Griswold, James Calvin Allan, Suruchi Anand, Rudolph A. Beasley, John V. Kelly, Sean Ward, Ronan P. Wood
  • Publication number: 20130253345
    Abstract: In one example, this disclosure is directed to a kit for intravascular implantation of an implantable medical device within a patient, the kit comprising an elongated outer sheath forming an inner lumen with a distal opening, the outer sheath sized to traverse a vasculature of the patient, and an elongated inner sheath with an enlarged distal portion, wherein the enlarged distal portion is configured to substantially fill the inner lumen and close-off the distal opening of the outer sheath. The enlarged distal portion is slidable relative to the outer sheath. The inner sheath further includes a tether with a helical element that is remotely controllable from a proximal end of the inner sheath to release the implantable medical device from a distal portion of the outer sheath.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 26, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: Erik C. Griswold, James Calvin Allan, Rudolph A. Beasley, William Berthiaume, Arvind K. Srinivas, Don H. Tran, Suruchi Anand, Martha A. Barajas-Torres, Matthew S. Poole, Steven L. Waldhauser
  • Publication number: 20130253342
    Abstract: In one example, this disclosure is directed to a kit for intravascular implantation of an implantable medical device within a patient, the kit comprising an elongated inner sheath with a distal end, a first coupling module slidably connected to the inner sheath, an elongated outer sheath forming an inner lumen with a distal opening and a proximal opening. The outer sheath sized to traverse a vasculature of the patient. The proximal opening is configured to receive the distal end of the inner sheath. The inner lumen is sized to receive the inner sheath and to contain the implantable medical device. The kit further includes a mating coupling module that connects to the first coupling module such that the inner sheath is axially aligned with the outer sheath. The inner sheath is slidable within the outer sheath while the first coupling module is connected to the mating coupling module.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 26, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: Erik C. Griswold, James Calvin Allan, Don H. Tran
  • Publication number: 20130253346
    Abstract: In one example, this disclosure is directed to a kit for intravascular implantation of an implantable medical device, the kit comprising an outer sheath, the outer sheath sized to traverse a vasculature of the patient, and an elongated inner sheath with a tapered distal end. The inner sheath is slidable within the inner lumen of the outer sheath and is selectably removable from the inner lumen of the outer sheath by sliding the inner sheath out of the proximal opening of the outer sheath. The kit includes an elongated deployment receptacle including a deployment bay slidable within the inner lumen of the outer sheath when the inner sheath is not within the inner lumen of the outer sheath. The deployment bay carries an implantable medical device through the inner lumen of the outer sheath and facilitates deployment of the implantable medical device from the distal end of the outer sheath.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 26, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: Erik C. Griswold, James Calvin Allan, Rudolph A. Beasley, William J. Havel, Jon D. Schell, Don H. Tran, Steven L. Waldhauser
  • Publication number: 20130253344
    Abstract: In one example, this disclosure is directed to a kit for intravascular implantation of an implantable medical device within a patient, the kit comprising an elongated outer sheath forming an inner lumen with a distal opening, the outer sheath sized to traverse a vasculature of the patient, and an elongated inner sheath with an inflatable member at its distal portion. The inflatable member is inflatable from a proximal end of the inner sheath to close-off the distal opening of the outer sheath when inflated. The inner sheath further includes a stopper proximally located relative to the inflatable member. The inflatable member is remotely controllable from a proximal end of the inner sheath to retract in a proximal direction towards the stopper. The inflatable member can be retracted in a proximal direction towards the stopper and past an implantable medical device positioned within a distal portion of the outer sheath.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 26, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: Erik C. Griswold, Rudolph A. Beasley, James Calvin Allan, Suruchi Anand, Martha A. Barajas-Torres, Matthew S. Poole, Arvind K. Srinivas, Steven L. Waldhauser, William Berthiaume
  • Publication number: 20130253309
    Abstract: In one example, this disclosure is directed to a method for intravascular implantation of an implantable medical device comprising positioning a distal end of an elongated outer sheath forming an inner lumen adjacent a target site within a vasculature of a patient, and partially deploying an implantable medical device from the distal opening, wherein the implantable medical device includes an expandable fixation element. A portion of the expandable fixation element assumes an expanded position when the implantable medical device is partially deployed from the distal opening. The method including advancing the distal end of the outer sheath within the vasculature with the implantable medical device partially deployed from the distal opening, and monitoring at least one of the vasculature and the portion of the expandable fixation element for deflection to determine when the size of the portion of the expandable fixation element corresponds to the size of the vasculature.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 26, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: James Calvin Allan, Erik C. Griswold, William J. Havel, Steven L. Waldhauser, Kelly M. Wien, Kendra Yasger, Rudolph A. Beasley, Jon D. Schell, Don H. Tran
  • Patent number: 8478431
    Abstract: A fixation device for retaining a leadless medical implant to tissue includes an array of elongate tines having self-expanding distal portions. The fixation tines may be advanced between an implant body and an outer jacket to deploy the tines from a delivery configuration in which the tines are constrained by the outer jacket to an expanded configuration in which the distal end portions of the tines are released from the outer jacket. The implant and fixation device are contained within a sheath for delivery to the treatment site and a pusher within the sheath advances the fixation device relative to the implant body and deploys the tines. A distal end of the implant having an electrode may form a distal tip of the delivery system, and a potential implantation site may be tested prior to deployment of the fixation device to allow for easy repositioning of the implant.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: July 2, 2013
    Assignee: Medtronic, Inc.
    Inventors: Erik Griswold, James Calvin Allan, Don Tran
  • Patent number: 8475372
    Abstract: An implantable medical device, such as a sensor for monitoring a selected internally detectable physiological parameter of a patient, is attached to a fixation member that is deployable within the patient to position and orient the sensor to enable it to perform its function. The fixation member may be configured to lie in a single plane when deployed or may be tubular in shape. The attachment of the housing and fixation member includes providing the fixation member with a linear attachment strut that is non-circular in cross section and providing the housing with external members that define an elongate channel, non-circular in cross section and receptive to the attachment strut. The attachment strut can be inserted transversely into the channel and the external member can be crimped over the strut to secure the housing and fixation member together.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: July 2, 2013
    Assignee: Medtronic Vascular, Inc.
    Inventors: Jon D. Schell, George Patras, Kamal Deep Mothilal, Erik Griswold, James Calvin Allan, Albert Dunfee, Rudy Beasley
  • Patent number: 8412352
    Abstract: This disclosure is directed to an implantable medical device having a housing that encloses at least a communication module. The implantable medical device also includes a first electrode electrically coupled to the communication module and an electrically conductive fixation mechanism that is mechanically coupled to the housing and electrically coupled to the communication module within the housing. The electrically conductive fixation mechanism includes a dielectric material that covers part of a surface of the fixation mechanism. A portion of the electrically conductive fixation mechanism is not covered by the dielectric material such that the portion of the electrically conductive fixation mechanism is exposed to form a second electrode that is electrically coupled to the communication module. The communication module is configured to communicate using the first electrode and second electrode.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 2, 2013
    Assignee: Medtronic, Inc.
    Inventors: Erik C. Griswold, James Calvin Allan
  • Patent number: 8401643
    Abstract: A medical device adapted to be implanted in a vessel of a human body includes a housing that contains a diagnostic or therapeutic module and an anchor for supporting the housing in an intended location and orientation within the vessel. The anchor is expandable from a low profile configuration adapted for delivery to an expanded configuration for engagement with the vessel wall. The anchor and a delivery catheter are adapted to enable the medical device to be retrieved and repositioned or removed from the vessel. The anchor is adapted to apply sufficient force against the vessel wall to maintain the anchor in place but less force than that required to provide scaffolding support for the vessel.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: March 19, 2013
    Assignee: Medtronic Vascular, Inc.
    Inventors: Erik Griswold, James Calvin Allan, Rudy Beasley
  • Publication number: 20130035636
    Abstract: A delivery catheter and method for delivering and deploying an implantable medical device include a mechanical latch by which the device can remain firmly attached at a single point of connection to the delivery catheter during deployment of the device. The delivery catheter provides simple yet firm control of the release mechanism to enable the clinician to confirm the accuracy of the deployment before releasing the tether or, if the placement of the device should be corrected, the tether can be maintained while the device is recaptured and repositioned or removed from the patient.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 7, 2013
    Applicant: Medtronic Vascular, Inc.
    Inventors: Rudy Beasley, William Chang, Sina Som, Don Tran, James Calvin Allan
  • Publication number: 20120296222
    Abstract: A medical device adapted to be implanted in a vessel of a human body includes a housing that contains means for performing medical functions and an anchor for supporting the housing in an intended location and orientation within the vessel. The anchor is expandable from a low profile configuration adapted for delivery to an expanded configuration for engagement with the vessel wall. The anchor and delivery device are adapted to enable the medical device to be retrieved and repositioned or removed from the vessel. The anchor is adapted to apply sufficient force against the vessel wall to maintain the anchor in place but less force than that required to provide scaffolding support for the vessel.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 22, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: Erik Griswold, James Calvin Allan, Rudy Beasley
  • Publication number: 20120291788
    Abstract: A medical device adapted to be implanted in a vessel of a human body includes a housing that contains means for performing medical functions and an anchor for supporting the housing in an intended location and orientation within the vessel. The anchor is expandable from a low profile configuration adapted for delivery to an expanded configuration for engagement with the vessel wall. The anchor and delivery device are adapted to enable the medical device to be retrieved and repositioned or removed from the vessel. The anchor is adapted to apply sufficient force against the vessel wall to maintain the anchor in place but less force than that required to provide scaffolding support for the vessel.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 22, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: Erik Griswold, James Calvin Allan, Rudy Beasley
  • Publication number: 20120271134
    Abstract: A delivery device for implanting a medical device that includes an expandable fixation member adapted to fix the position of the medical device within a lumen of a human body. The delivery device has an inner shaft rotatably disposed in a tubular outer shaft. A retention member is secured to and rotatable with the inner shaft and has a free end and a retainer portion adapted to protrude outwardly through an exit aperture in the outer shaft to extend circumferentially about the exterior of the outer shaft. The fixation member of the medical device may be retained on the tubular shaft in a low profile configuration by the outwardly protruding retainer portion and may be released to expand upon retraction of the retainer portion in response to rotation of the inner shaft.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 25, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: James Calvin Allan, Don Tran, Erik Griswold, Rudy Beasley, Arvind Srinivas
  • Publication number: 20120197349
    Abstract: This disclosure is directed to an implantable medical device having a housing that encloses at least a communication module. The implantable medical device also includes a first electrode electrically coupled to the communication module and an electrically conductive fixation mechanism that is mechanically coupled to the housing and electrically coupled to the communication module within the housing. The electrically conductive fixation mechanism includes a dielectric material that covers part of a surface of the fixation mechanism. A portion of the electrically conductive fixation mechanism is not covered by the dielectric material such that the portion of the electrically conductive fixation mechanism is exposed to form a second electrode that is electrically coupled to the communication module. The communication module is configured to communicate using the first electrode and second electrode.
    Type: Application
    Filed: March 15, 2011
    Publication date: August 2, 2012
    Inventors: Erik C. Griswold, James Calvin Allan
  • Publication number: 20120108922
    Abstract: An implantable medical device, such as a sensor for monitoring a selected internally detectable physiological parameter of a patient, is attached to a fixation member that is deployable within the patient to position and orient the sensor to enable it to perform its function. The fixation member may be configured to lie in a single plane when deployed or may be tubular in shape. The attachment of the housing and fixation member includes providing the fixation member with a linear attachment strut that is non-circular in cross section and providing the housing with external members that define an elongate channel, non-circular in cross section and receptive to the attachment strut. The attachment strut can be inserted transversely into the channel and the external member can be crimped over the strut to secure the housing and fixation member together.
    Type: Application
    Filed: April 20, 2011
    Publication date: May 3, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: Jon D. Schell, George Patras, Kamal Deep Mothilal, Erik Griswold, James Calvin Allan, Albert Dunfee, Rudy Beasley
  • Publication number: 20120108986
    Abstract: An implantable medical device, such as a sensor for monitoring a selected internally detectable physiological parameter of a patient, is attached to a fixation member that is deployable within the patient to position and orient the sensor to enable it to perform its function. The fixation member may be configured to lie in a single plane when deployed or may be tubular in shape. The attachment of the housing and fixation member includes providing the fixation member with a linear attachment strut that is non-circular in cross section and providing the housing with external members that define an elongate channel, non-circular in cross section and receptive to the attachment strut. The attachment strut can be inserted transversely into the channel and the external member can be crimped over the strut to secure the housing and fixation member together.
    Type: Application
    Filed: April 20, 2011
    Publication date: May 3, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: Rudy Beasley, Erik Griswold, James Calvin Allan, George Patras, Kamal Deep Mothilal, Albert Dunfee
  • Publication number: 20110251662
    Abstract: A fixation device for retaining a leadless medical implant to tissue includes an array of elongate tines having self-expanding distal portions. The fixation tines may be advanced between an implant body and an outer jacket to deploy the tines from a delivery configuration in which the tines are constrained by the outer jacket to an expanded configuration in which the distal end portions of the tines are released from the outer jacket. The implant and fixation device are contained within a sheath for delivery to the treatment site and a pusher within the sheath advances the fixation device relative to the implant body and deploys the tines. A distal end of the implant having an electrode may form a distal tip of the delivery system, and a potential implantation site may be tested prior to deployment of the fixation device to allow for easy repositioning of the implant.
    Type: Application
    Filed: March 14, 2011
    Publication date: October 13, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventors: Erik Griswold, James Calvin Allan, Don Tran