Patents by Inventor Cameron Buschardt

Cameron Buschardt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230409486
    Abstract: A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.
    Type: Application
    Filed: August 25, 2023
    Publication date: December 21, 2023
    Inventors: Jerome F. DULUK, Jr., Cameron BUSCHARDT, Sherry CHEUNG, James Leroy DEMING, Samuel H. DUNCAN, Lucien DUNNING, Robert GEORGE, Arvind GOPALAKRISHNAN, Mark HAIRGROVE, Chenghuan JIA, John MASHEY
  • Patent number: 11741015
    Abstract: A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: August 29, 2023
    Assignee: NVIDIA Corporation
    Inventors: Jerome F. Duluk, Jr., Cameron Buschardt, Sherry Cheung, James Leroy Deming, Samuel H. Duncan, Lucien Dunning, Robert George, Arvind Gopalakrishnan, Mark Hairgrove, Chenghuan Jia, John Mashey
  • Publication number: 20220405211
    Abstract: A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.
    Type: Application
    Filed: August 18, 2022
    Publication date: December 22, 2022
    Inventors: Jerome F. DULUK, Jr., Cameron BUSCHARDT, Sherry CHEUNG, James Leroy DEMING, Samuel H. DUNCAN, Lucien DUNNING, Robert GEORGE, Arvind GOPALAKRISHNAN, Mark HAIRGROVE, Chenghuan JIA, Josh MASHEY
  • Patent number: 11487673
    Abstract: A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: November 1, 2022
    Assignee: NVIDIA Corporation
    Inventors: Jerome F. Duluk, Jr., Cameron Buschardt, Sherry Cheung, James Leroy Deming, Samuel H. Duncan, Lucien Dunning, Robert George, Arvind Gopalakrishnan, Mark Hairgrove, Chenghuan Jia, John Mashey
  • Patent number: 11210253
    Abstract: Techniques are disclosed for tracking memory page accesses in a unified virtual memory system. An access tracking unit detects a memory page access generated by a first processor for accessing a memory page in a memory system of a second processor. The access tracking unit determines whether a cache memory includes an entry for the memory page. If so, then the access tracking unit increments an associated access counter. Otherwise, the access tracking unit attempts to find an unused entry in the cache memory that is available for allocation. If so, then the access tracking unit associates the second entry with the memory page, and sets an access counter associated with the second entry to an initial value. Otherwise, the access tracking unit selects a valid entry in the cache memory; clears an associated valid bit; associates the entry with the memory page; and initializes an associated access counter.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: December 28, 2021
    Assignee: NVIDIA Corporation
    Inventors: Jerome F. Duluk, Jr., Cameron Buschardt, James Leroy Deming, Brian Fahs, Mark Hairgrove, John Mashey
  • Publication number: 20200364821
    Abstract: The present invention facilitates efficient and effective utilization of unified virtual addresses across multiple components. In one exemplary implementation, an address allocation process comprises: establishing space for managed pointers across a plurality of memories, including allocating one of the managed pointers with a first portion of memory associated with a first one of a plurality of processors; and performing a process of automatically managing accesses to the managed pointers across the plurality of processors and corresponding memories. The automated management can include ensuring consistent information associated with the managed pointers is copied from the first portion of memory to a second portion of memory associated with a second one of the plurality of processors based upon initiation of an accesses to the managed pointers from the second one of the plurality of processors.
    Type: Application
    Filed: July 2, 2020
    Publication date: November 19, 2020
    Inventors: Stephen Jones, Vivek Kini, Piotr Jaroszynski, Mark Hairgrove, David Fontaine, Cameron Buschardt, Lucien Dunning, John Hubbard
  • Patent number: 10762593
    Abstract: The present invention facilitates efficient and effective utilization of unified virtual addresses across multiple components. In one exemplary implementation, an address allocation process comprises: establishing space for managed pointers across a plurality of memories, including allocating one of the managed pointers with a first portion of memory associated with a first one of a plurality of processors; and performing a process of automatically managing accesses to the managed pointers across the plurality of processors and corresponding memories. The automated management can include ensuring consistent information associated with the managed pointers is copied from the first portion of memory to a second portion of memory associated with a second one of the plurality of processors based upon initiation of an accesses to the managed pointers from the second one of the plurality of processors.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: September 1, 2020
    Assignee: NVIDIA CORPORATION
    Inventors: Stephen Jones, Vivek Kini, Piotr Jaroszynski, Mark Hairgrove, David Fontaine, Cameron Buschardt, Lucien Dunning, John Hubbard
  • Publication number: 20200265543
    Abstract: The present invention facilitates efficient and effective utilization of unified virtual addresses across multiple components. In one exemplary implementation, an address allocation process comprises: establishing space for managed pointers across a plurality of memories, including allocating one of the managed pointers with a first portion of memory associated with a first one of a plurality of processors; and performing a process of automatically managing accesses to the managed pointers across the plurality of processors and corresponding memories. The automated management can include ensuring consistent information associated with the managed pointers is copied from the first portion of memory to a second portion of memory associated with a second one of the plurality of processors based upon initiation of an accesses to the managed pointers from the second one of the plurality of processors.
    Type: Application
    Filed: December 31, 2018
    Publication date: August 20, 2020
    Inventors: Stephen Jones, Vivek Kini, Piotr Jaroszynski, Mark Hairgrove, David Fontaine, Cameron Buschardt, Lucien Dunning, John Hubbard
  • Patent number: 10546361
    Abstract: The present invention facilitates efficient and effective utilization of unified virtual addresses across multiple components. In one exemplary implementation, an address allocation process comprises: establishing space for managed pointers across a plurality of memories, including allocating one of the managed pointers with a first portion of memory associated with a first one of a plurality of processors; and performing a process of automatically managing accesses to the managed pointers across the plurality of processors and corresponding memories. The automated management can include ensuring consistent information associated with the managed pointers is copied from the first portion of memory to a second portion of memory associated with a second one of the plurality of processors based upon initiation of an accesses to the managed pointers from the second one of the plurality of processors.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: January 28, 2020
    Assignee: NVIDIA CORPORATION
    Inventors: Stephen Jones, Vivek Kini, Piotr Jaroszynski, Mark Hairgrove, David Fontaine, Cameron Buschardt, Lucien Dunning, John Hubbard
  • Publication number: 20190340145
    Abstract: Techniques are disclosed for tracking memory page accesses in a unified virtual memory system. An access tracking unit detects a memory page access generated by a first processor for accessing a memory page in a memory system of a second processor. The access tracking unit determines whether a cache memory includes an entry for the memory page. If so, then the access tracking unit increments an associated access counter. Otherwise, the access tracking unit attempts to find an unused entry in the cache memory that is available for allocation. If so, then the access tracking unit associates the second entry with the memory page, and sets an access counter associated with the second entry to an initial value. Otherwise, the access tracking unit selects a valid entry in the cache memory; clears an associated valid bit; associates the entry with the memory page; and initializes an associated access counter.
    Type: Application
    Filed: June 24, 2019
    Publication date: November 7, 2019
    Inventors: Jerome F. DULUK, JR., Cameron BUSCHARDT, James Leroy DEMING, Brian FAHS, Mark HAIRGROVE, John MASHEY
  • Patent number: 10445243
    Abstract: A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: October 15, 2019
    Assignee: NVIDIA CORPORATION
    Inventors: Jerome F. Duluk, Jr., Cameron Buschardt, Sherry Cheung, James Leroy Deming, Samuel H. Duncan, Lucien Dunning, Robert George, Arvind Gopalakrishnan, Mark Hairgrove, Chenghuan Jia, John Mashey
  • Patent number: 10409730
    Abstract: One embodiment of the present invention includes a microcontroller coupled to a memory management unit (MMU). The MMU is coupled to a page table included in a physical memory, and the microcontroller is configured to perform one or more virtual memory operations associated with the physical memory and the page table. In operation, the microcontroller receives a page fault generated by the MMU in response to an invalid memory access via a virtual memory address. To remedy such a page fault, the microcontroller performs actions to map the virtual memory address to an appropriate location in the physical memory. By contrast, in prior-art systems, a fault handler would typically remedy the page fault. Advantageously, because the microcontroller executes these tasks locally with respect to the MMU and the physical memory, latency associated with remedying page faults may be decreased. Consequently, overall system performance may be increased.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: September 10, 2019
    Assignee: NVIDIA CORPORATION
    Inventors: Cameron Buschardt, Jerome F. Duluk, Jr., John Mashey, Mark Hairgrove, James Leroy Deming, Brian Fahs
  • Patent number: 10331603
    Abstract: Techniques are disclosed for tracking memory page accesses in a unified virtual memory system. An access tracking unit detects a memory page access generated by a first processor for accessing a memory page in a memory system of a second processor. The access tracking unit determines whether a cache memory includes an entry for the memory page. If so, then the access tracking unit increments an associated access counter. Otherwise, the access tracking unit attempts to find an unused entry in the cache memory that is available for allocation. If so, then the access tracking unit associates the second entry with the memory page, and sets an access counter associated with the second entry to an initial value. Otherwise, the access tracking unit selects a valid entry in the cache memory; clears an associated valid bit; associates the entry with the memory page; and initializes an associated access counter.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: June 25, 2019
    Assignee: NVIDIA CORPORATION
    Inventors: Jerome F. Duluk, Jr., Cameron Buschardt, James Leroy Deming, Brian Fahs, Mark Hairgrove, John Mashey
  • Patent number: 10303616
    Abstract: A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: May 28, 2019
    Assignee: NVIDIA CORPORATION
    Inventors: Jerome F. Duluk, Jr., Chenghuan Jia, John Mashey, Cameron Buschardt, Sherry Cheung, James Leroy Deming, Samuel H. Duncan, Lucien Dunning, Robert George, Arvind Gopalakrishnan, Mark Hairgrove
  • Publication number: 20190147561
    Abstract: The present invention facilitates efficient and effective utilization of unified virtual addresses across multiple components. In one exemplary implementation, an address allocation process comprises: establishing space for managed pointers across a plurality of memories, including allocating one of the managed pointers with a first portion of memory associated with a first one of a plurality of processors; and performing a process of automatically managing accesses to the managed pointers across the plurality of processors and corresponding memories. The automated management can include ensuring consistent information associated with the managed pointers is copied from the first portion of memory to a second portion of memory associated with a second one of the plurality of processors based upon initiation of an accesses to the managed pointers from the second one of the plurality of processors.
    Type: Application
    Filed: December 31, 2018
    Publication date: May 16, 2019
    Inventors: Stephen Jones, Vivek Kini, Piotr Jaroszynski, Mark Hairgrove, David Fontaine, Cameron Buschardt, Lucien Dunning, John Hubbard
  • Patent number: 10216413
    Abstract: Techniques are provided by which memory pages may be migrated among PPU memories in a multi-PPU system. According to the techniques, a UVM driver determines that a particular memory page should change ownership state and/or be migrated between one PPU memory and another PPU memory. In response to this determination, the UVM driver initiates a peer transition sequence to cause the ownership state and/or location of the memory page to change. Various peer transition sequences involve modifying mappings for one or more PPU, and copying a memory page from one PPU memory to another PPU memory. Several steps in peer transition sequences may be performed in parallel for increased processing speed.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: February 26, 2019
    Assignee: NVIDIA CORPORATION
    Inventors: Jerome F. Duluk, Jr., John Mashey, Mark Hairgrove, Chenghuan Jia, Cameron Buschardt, Lucien Dunning, Brian Fahs
  • Patent number: 10133677
    Abstract: Techniques are disclosed for transitioning a memory page between memories in a virtual memory subsystem. A unified virtual memory (UVM) driver detects a page fault in response to a memory access request associated with a first memory page, where a local page table does not include an entry corresponding to a virtual memory address included in the memory access request. The UVM driver, in response to the page fault, executes a page fault sequence. The page fault sequence includes modifying the ownership state associated with the first memory page to be central-processing-unit-shared. The page fault sequence further includes scheduling the first memory page for migration from a system memory associated with a central processing unit (CPU) to a local memory associated with a parallel processing unit (PPU). One advantage of the disclosed approach is that the PPU accesses memory pages with greater efficiency.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: November 20, 2018
    Assignee: NVIDIA CORPORATION
    Inventors: Jerome F. Duluk, Jr., Cameron Buschardt, James Leroy Deming, Lucien Dunning, Brian Fahs, Mark Hairgrove, John Mashey
  • Patent number: 10061526
    Abstract: One embodiment of the present invention is a memory subsystem that includes a sliding window tracker that tracks memory accesses associated with a sliding window of memory page groups. When the sliding window tracker detects an access operation associated with a memory page group within the sliding window, the sliding window tracker sets a reference bit that is associated with the memory page group and is included in a reference vector that represents accesses to the memory page groups within the sliding window. Based on the values of the reference bits, the sliding window tracker causes the selection a memory page in a memory page group that has fallen into disuse from a first memory to a second memory. Because the sliding window tracker tunes the memory pages that are resident in the first memory to reflect memory access patterns, the overall performance of the memory subsystem is improved.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: August 28, 2018
    Assignee: NVIDIA CORPORATION
    Inventors: John Mashey, Cameron Buschardt, James Leroy Deming, Jerome F. Duluk, Jr., Brian Fahs
  • Publication number: 20180232332
    Abstract: Techniques are disclosed for tracking memory page accesses in a unified virtual memory system. An access tracking unit detects a memory page access generated by a first processor for accessing a memory page in a memory system of a second processor. The access tracking unit determines whether a cache memory includes an entry for the memory page. If so, then the access tracking unit increments an associated access counter. Otherwise, the access tracking unit attempts to find an unused entry in the cache memory that is available for allocation. If so, then the access tracking unit associates the second entry with the memory page, and sets an access counter associated with the second entry to an initial value. Otherwise, the access tracking unit selects a valid entry in the cache memory; clears an associated valid bit; associates the entry with the memory page; and initializes an associated access counter.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 16, 2018
    Inventors: Jerome F. DULUK, JR., Cameron BUSCHARDT, James Leroy DEMING, Brian FAHS, Mark HAIRGROVE, John MASHEY
  • Patent number: 10031856
    Abstract: A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: July 24, 2018
    Assignee: NVIDIA CORPORATION
    Inventors: Jerome F. Duluk, Jr., Chenghuan Jia, John Mashey, Cameron Buschardt, Sherry Cheung, James Leroy Deming, Samuel H. Duncan, Lucien Dunning, Robert George, Arvind Gopalakrishnan, Mark Hairgrove