Patents by Inventor Cameron Wayne Tanner

Cameron Wayne Tanner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170210634
    Abstract: A system, process and related sintered article are provided. The process includes supporting a piece of inorganic material with a pressurized gas and sintering the piece of inorganic material while supported by the pressurized gas by heating the piece of inorganic material to a temperature at or above a sintering temperature of the inorganic material such that the inorganic material is at least partially sintered forming the sintered article. The inorganic material is not in contact with a solid support during sintering. The sintered article, such as a ceramic article, is thin, has high surface quality, and/or has large surface areas.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 27, 2017
    Inventors: Michael Edward Badding, William Joseph Bouton, Douglas Edward Brackley, Lanrik Wayne Kester, Thomas Dale Ketcham, Eric Lee Miller, Cameron Wayne Tanner, James William Zimmermann
  • Publication number: 20170044041
    Abstract: A glass forming apparatus comprises a forming device configured to form a glass ribbon from a quantity of molten glass. The glass forming apparatus includes a refractory material comprising monazite (REPO4). In another example, a method of forming a glass ribbon with a glass forming apparatus includes the step of supporting a quantity of molten glass with a refractory member comprising a refractory material comprising monazite (REPO4). The method further includes the step of forming the glass ribbon from the quantity of molten glass.
    Type: Application
    Filed: November 24, 2014
    Publication date: February 16, 2017
    Inventors: Hilary Tony GODARD, Scott Michael JAVIS, Thomas Dale KETCHAM, James Robert RUSTAD, Cameron Wayne TANNER
  • Patent number: 9502729
    Abstract: An ion-conducting composite electrolyte is provided comprising path-engineered ion-conducting ceramic electrolyte particles and a solid polymeric matrix. The path-engineered particles are characterized by an anisotropic crystalline structure and the ionic conductivity of the crystalline structure in a preferred conductivity direction H associated with one of the crystal planes of the path-engineered particle is larger than the ionic conductivity of the crystalline structure in a reduced conductivity direction L associated with another of the crystal planes of the path-engineered particle. The path-engineered particles are sized and positioned in the polymeric matrix such that a majority of the path-engineered particles breach both of the opposite major faces of the matrix body and are oriented in the polymeric matrix such that the preferred conductivity direction H is more closely aligned with a minimum path length spanning a thickness of the matrix body than is the reduced conductivity direction L.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: November 22, 2016
    Assignee: Corning Incorporated
    Inventors: Michael Edward Badding, Jacqueline Leslie Brown, Katherine A. Fink, Atanas Valentinov Gagov, Cameron Wayne Tanner
  • Publication number: 20150102516
    Abstract: Disclosed herein are green bodies comprising at least one ceramic-forming powder; at least one binder; and at least one cross-linked starch present in an amount of at least about 20% by weight as a super addition. Further disclosed herein is a method of making a porous ceramic body comprising mixing at least one ceramic-forming powder, at least one solvent such as water, at least one binder, and at least one cross-linked starch present in an amount of about 20% by weight as a super addition to form a batch composition; extruding the batch composition to form a green body; drying the green body; and firing the green body to form a porous ceramic body. Also disclosed herein are methods of screening a green body for making a porous ceramic body.
    Type: Application
    Filed: September 12, 2014
    Publication date: April 16, 2015
    Inventors: Mark Alan Lewis, Pascale Oram, Cameron Wayne Tanner, Elizabeth Marie Vileno
  • Patent number: 8992821
    Abstract: A pass-through catalytic substrate can comprise a plurality of porous ceramic substrate walls defining flow channels extending between an inlet end and an outlet end of the catalytic substrate. The pass-through catalytic substrate can include a plurality of porous ceramic beveled corner portions positioned at intersecting corners of the substrate walls within the flow channels. In one example, the porous ceramic beveled corner portions each include a heat capacity less than about 1.38 J/cm3/K. In another example, a catalytic washcoat layer can be provided for coating the porous ceramic substrate walls and the porous ceramic beveled corner portions. Methods for producing a pass-through catalytic substrate also provide porous ceramic beveled corner portions.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: March 31, 2015
    Assignee: Corning Incorporated
    Inventors: Keith Norman Bubb, Cameron Wayne Tanner
  • Publication number: 20150038323
    Abstract: A pass-through catalytic substrate can comprise a plurality of porous ceramic substrate walls defining flow channels extending between an inlet end and an outlet end of the catalytic substrate. The pass-through catalytic substrate can include a plurality of porous ceramic beveled corner portions positioned at intersecting corners of the substrate walls within the flow channels. In one example, the porous ceramic beveled corner portions each include a heat capacity less than about 1.38 J/cm3/K. In another example, a catalytic washcoat layer can be provided for coating the porous ceramic substrate walls and the porous ceramic beveled corner portions. Methods for producing a pass-through catalytic substrate also provide porous ceramic beveled corner portions.
    Type: Application
    Filed: October 20, 2014
    Publication date: February 5, 2015
    Inventors: Keith Norman Bubb, Cameron Wayne Tanner
  • Publication number: 20140357476
    Abstract: Disclosed herein are formed ceramic substrates comprising an oxide ceramic material, wherein the formed ceramic substrate comprises a low elemental alkali metal content, such as less than about 1000 ppm. Also disclosed are composite bodies comprising at least one catalyst and a formed ceramic substrate comprising an oxide ceramic material, wherein the composite body has a low elemental alkali metal content, such as less than about 1000 ppm, and methods for preparing the same.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: Christian Bischof, Thorsten Rolf Boger, Gregory Albert Merkel, Zhen Song, Cameron Wayne Tanner, Patrick David Tepesch, Elizabeth Marie Vileno
  • Publication number: 20140357473
    Abstract: Disclosed herein are formed ceramic substrates comprising an oxide ceramic material, wherein the formed ceramic substrate comprises a low elemental alkali metal content, such as less than about 1000 ppm. Also disclosed are composite bodies comprising at least one catalyst and a formed ceramic substrate comprising an oxide ceramic material, wherein the composite body has a low elemental alkali metal content, such as less than about 1000 ppm, and methods for preparing the same.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: Christian Bischof, Cameron Wayne Tanner, Patrick David Tepesch, Elizabeth Marie Vileno
  • Patent number: 8865084
    Abstract: A pass-through catalytic substrate can comprise a plurality of porous ceramic substrate walls defining flow channels extending between an inlet end and an outlet end of the catalytic substrate. The pass-through catalytic substrate can include a plurality of porous ceramic beveled corner portions positioned at intersecting corners of the substrate walls within the flow channels. In one example, the porous ceramic beveled corner portions each include a heat capacity less than about 1.38 J/cm3/K. In another example, a catalytic washcoat layer can be provided for coating the porous ceramic substrate walls and the porous ceramic beveled corner portions. Methods for producing a pass-through catalytic substrate also provide porous ceramic beveled corner portions.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 21, 2014
    Assignee: Corning Incorporated
    Inventors: Keith Norman Bubb, Cameron Wayne Tanner
  • Patent number: 8796168
    Abstract: Synthetic sintered YPO4 composite materials comprising excess amount of Y2O3 in the composition and process for making such materials. The Y2O3-modified sintered YPO4 composite material exhibits improved mechanical properties compared to stoichiometric YPO4 materials. The modified YPO4 materials can be used to produce different components used in the glass-making process such as, for example, an isopipe.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: August 5, 2014
    Assignee: Corning Incorporated
    Inventor: Cameron Wayne Tanner
  • Patent number: 8741210
    Abstract: Porous spodumene-cordierite honeycomb bodies of high strength but low volumetric density, useful for the manufacture of close-coupled engine exhaust converters, gasoline engine particulate exhaust filters, and NOx integrated engine exhaust filters, are provided through the reactive sintering of batches comprising sources of magnesia, alumina and silica together with a lithia source, such as a spodumene or petalite ore.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: June 3, 2014
    Assignee: Corning Incorporated
    Inventors: Gregory Albert Merkel, Cameron Wayne Tanner
  • Publication number: 20140147664
    Abstract: A porous cellular body comprising primarily a porous sintered glass material is disclosed. The porous sintered glass material primarily includes a first phase and a second phase, the first phase primarily comprising amorphous fused silica and the second phase comprising amorphous fused silica and a sintering aid.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 29, 2014
    Applicant: Corning Incorporated
    Inventors: Douglas Munroe Beall, Cameron Wayne Tanner
  • Publication number: 20140065513
    Abstract: An ion-conducting composite electrolyte is provided comprising path-engineered ion-conducting ceramic electrolyte particles and a solid polymeric matrix. The path-engineered particles are characterized by an anisotropic crystalline structure and the ionic conductivity of the crystalline structure in a preferred conductivity direction H associated with one of the crystal planes of the path-engineered particle is larger than the ionic conductivity of the crystalline structure in a reduced conductivity direction L associated with another of the crystal planes of the path-engineered particle. The path-engineered particles are sized and positioned in the polymeric matrix such that a majority of the path-engineered particles breach both of the opposite major faces of the matrix body and are oriented in the polymeric matrix such that the preferred conductivity direction H is more closely aligned with a minimum path length spanning a thickness of the matrix body than is the reduced conductivity direction L.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Inventors: Michael Edward Badding, Jacqueline Leslie Brown, Katherine A. Fink, Atanas Valentinov Gagov, Cameron Wayne Tanner
  • Publication number: 20130152532
    Abstract: Porous spodumene-cordierite honeycomb bodies of high strength but low volumetric density, useful for the manufacture of close-coupled engine exhaust converters, gasoline engine particulate exhaust filters, and NOx integrated engine exhaust filters, are provided through the reactive sintering of batches comprising sources of magnesia, alumina and silica together with a lithia source, such as a spodumene or petalite ore.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Inventors: Gregory Albert Merkel, Cameron Wayne Tanner
  • Publication number: 20130136663
    Abstract: A pass-through catalytic substrate can comprise a plurality of porous ceramic substrate walls defining flow channels extending between an inlet end and an outlet end of the catalytic substrate. The pass-through catalytic substrate can include a plurality of porous ceramic beveled corner portions positioned at intersecting corners of the substrate walls within the flow channels. In one example, the porous ceramic beveled corner portions each include a heat capacity less than about 1.38 J/cm3/K. In another example, a catalytic washcoat layer can be provided for coating the porous ceramic substrate walls and the porous ceramic beveled corner portions. Methods for producing a pass-through catalytic substrate also provide porous ceramic beveled corner portions.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Inventors: Keith Norman Bubb, Cameron Wayne Tanner
  • Patent number: 8389430
    Abstract: Porous spodumene-cordierite honeycomb bodies of high strength but low volumetric density, useful for the manufacture of close-coupled engine exhaust converters, gasoline engine particulate exhaust filters, and NOx integrated engine exhaust filters, are provided through the reactive sintering of batches comprising sources of magnesia, alumina and silica together with a lithia source, such as a spodumene or petalite ore.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: March 5, 2013
    Assignee: Corning Incorporated
    Inventors: Gregory Albert Merkel, Cameron Wayne Tanner
  • Patent number: 8383537
    Abstract: Refractory materials are provided which contain P2O5/R2O3 constituents, where R is Y, Sc, Er, Lu, Yb, Tm, Ho, Dy, Tb, Gd, or a combination thereof, and/or V2O5/R?2O3 constituents where R? is Y, Sc, one or more rare earth elements, or a combination thereof. In certain embodiments, the refractory materials are xenotime-type materials and/or xenotime-stabilized zircon-type materials. The refractory materials can be used in the manufacture of glass and glass-ceramics. For example, the refractory materials, especially those that contain P2O5/R2O3 constituents, can be used as forming structures (“isopipes”) in the fusion process for making flat sheets of glass such as the glass sheets used as substrates in the manufacture of flat panel displays.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 26, 2013
    Assignee: Corning Incorporated
    Inventors: Hilary Tony Godard, Cameron Wayne Tanner, Michelle M Wallen, Elizabeth Margaret Wheeler
  • Patent number: 8314049
    Abstract: A porous ceramic body including a major phase of beta-spodumene and a minor phase of mullite, the aggregate composition of a batch in weight percents of LiAlSi2O6, SiO2, and Al6Si2O13 are as defined herein. Also disclosed is a method for making a porous ceramic article is and includes: mixing inorganic batch ingredients including sources of silica, alumina, and lithia, with a liquid and an organic binder to form a plasticized batch mixture; forming a green body; and heating to the porous ceramic article, comprised of a major phase of beta-spodumene and a minor phase of mullite.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: November 20, 2012
    Assignee: Corning Incorporated
    Inventors: Keith Norman Bubb, Cameron Wayne Tanner
  • Patent number: 8197769
    Abstract: Disclosed is a device for processing fluids, the device comprising an extruded body having multiple elongated cells therein, the body having a first fluidic passage therethrough defined principally within at least some of said cells, the first fluidic passage having a longitudinally serpentine path back and forth along the at least some of said cells.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: June 12, 2012
    Assignee: Corning Incorporated
    Inventors: Philippe Caze, Thierry Luc Alain Dannoux, Alexander Mikhailovich Efremov, Celine Claude Guermeur, Paulo Gaspar Jorge Marques, Keyan Schultes, James Scott Sutherland, Cameron Wayne Tanner, John Forrest Wight, Jr.
  • Publication number: 20120125048
    Abstract: Refractory materials are provided which contain P2O5/R2O3 constituents, where R is Y, Sc, Er, Lu, Yb, Tm, Ho, Dy, Tb, Gd, or a combination thereof, and/or V2O5/R?2O3 constituents where R? is Y, Sc, one or more rare earth elements, or a combination thereof. In certain embodiments, the refractory materials are xenotime-type materials and/or xenotime-stabilized zircon-type materials. The refractory materials can be used in the manufacture of glass and glass-ceramics. For example, the refractory materials, especially those that contain P2O5/R2O3 constituents, can be used as forming structures (“isopipes”) in the fusion process for making flat sheets of glass such as the glass sheets used as substrates in the manufacture of flat panel displays.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 24, 2012
    Inventors: Hilary Tony Godard, Cameron Wayne Tanner, Michelle M. Wallen, Elizabeth Margaret Wheeler