Patents by Inventor Camie W. CHAN

Camie W. CHAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10888588
    Abstract: Disclosed is a fully chemically defined, small molecule-mediated, directed differentiation system that promotes differentiation of stem cells, including embryonic stem cells, induced pluripotent stem cells, and adult stem cells, such as human forms of these stem cell types, to ventricular cardiomyocytes in a highly efficient, reproducible and scalable fashion. Also disclosed is a cost-effective and efficient protocol, or method, for generating cardiomyocytes and a cost-effective and efficient method of maturing cardiomyocytes. The disclosed differentiation system provides a platform to perform large-scale pharmacological screenings and to provide a valuable source of each of cardiac progenitor cells and cardiomyocytes for cell replacement therapies in cardiac repair.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: January 12, 2021
    Assignees: ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI, THE UNIVERSITY OF HONG KONG
    Inventors: Roger Joseph Hajjar, Camie W. Chan
  • Publication number: 20160271183
    Abstract: Disclosed is a fully chemically defined, small molecule-mediated, directed differentiation system that promotes differentiation of stem cells, including embryonic stem cells, induced pluripotent stem cells, and adult stem cells, such as human forms of these stem cell types, to ventricular cardiomyocytes in a highly efficient, reproducible and scalable fashion. Also disclosed is a cost-effective and efficient protocol, or method, for generating cardiomyocytes and a cost-effective and efficient method of maturing cardiomyocytes. The disclosed differentiation system provides a platform to perform large-scale pharmacological screenings and to provide a valuable source of each of cardiac progenitor cells and cardiomyocytes for cell replacement therapies in cardiac repair.
    Type: Application
    Filed: October 17, 2014
    Publication date: September 22, 2016
    Inventors: Roger Joseph HAJJAR, Camie W. CHAN