Patents by Inventor Candace Chan

Candace Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240052492
    Abstract: Forming a lithium lanthanum zirconate thin film includes disposing zirconium oxide on a substrate to yield a zirconium oxide coating, contacting the zirconium oxide coating with a solution including a lithium salt and a lanthanum salt, heating the substrate to yield a dried salt coating on the zirconium oxide coating, melting the dried salt coating to yield a molten salt mixture, reacting the molten salt mixture with the zirconium oxide coating to yield lithium lanthanum zirconate, and cooling the lithium lanthanum zirconate to yield a lithium lanthanum zirconate coating on the substrate. In some cases, the zirconium oxide coating is contacted with an aqueous molten salt mixture including a lithium salt and a lanthanum salt, the molten salt mixture is reacted with the zirconium oxide coating to yield lithium lanthanum zirconate, and the lithium lanthanum zirconate is cooled to yield a lithium lanthanum zirconate coating on the substrate.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 15, 2024
    Inventors: Candace Chan, Jon Mark Weller
  • Publication number: 20230391633
    Abstract: Fabricating a layer including lithium lanthanum zirconate (Li7La3Zr2O12) layer includes forming a slurry including lanthanum zirconate (La2Zr2O7) nanocrystals, a lithium precursor, and a lanthanum precursor in stoichiometric amounts to yield a dispersion including lithium, lanthanum, and zirconium. In some cases, the dispersion includes lithium, lanthanum, and zirconium in a molar ratio of 7:3:2. In certain cases, the slurry includes excess lithium. The slurry is dispensed onto a substrate and dried. The dried slurry is calcined to yield the layer including lithium lanthanum zirconate.
    Type: Application
    Filed: August 14, 2023
    Publication date: December 7, 2023
    Inventors: Jon Weller, Candace Chan
  • Patent number: 11807944
    Abstract: Forming a lithium lanthanum zirconate thin film includes disposing zirconium oxide on a substrate to yield a zirconium oxide coating, contacting the zirconium oxide coating with a solution including a lithium salt and a lanthanum salt, heating the substrate to yield a dried salt coating on the zirconium oxide coating, melting the dried salt coating to yield a molten salt mixture, reacting the molten salt mixture with the zirconium oxide coating to yield lithium lanthanum zirconate, and cooling the lithium lanthanum zirconate to yield a lithium lanthanum zirconate coating on the substrate. In some cases, the zirconium oxide coating is contacted with an aqueous molten salt mixture including a lithium salt and a lanthanum salt, the molten salt mixture is reacted with the zirconium oxide coating to yield lithium lanthanum zirconate, and the lithium lanthanum zirconate is cooled to yield a lithium lanthanum zirconate coating on the substrate.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: November 7, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Candace Chan, Jon Mark Weller
  • Patent number: 11760652
    Abstract: Fabricating a layer including lithium lanthanum zirconate (Li7La3Zr2O12) layer includes forming a slurry including lanthanum zirconate (La2Zr2O7) nanocrystals, a lithium precursor, and a lanthanum precursor in stoichiometric amounts to yield a dispersion including lithium, lanthanum, and zirconium. In some cases, the dispersion includes lithium, lanthanum, and zirconium in a molar ratio of 7:3:2. In certain cases, the slurry includes excess lithium. The slurry is dispensed onto a substrate and dried. The dried slurry is calcined to yield the layer including lithium lanthanum zirconate.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: September 19, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jon Weller, Candace Chan
  • Patent number: 11597658
    Abstract: Nanosized cubic lithium lanthanum zirconate is synthesized by forming a solution including an organic compound and compounds of lithium, lanthanum, and zirconium; drying the solution to yield a solid; and heating the solid in the presence of oxygen to pyrolyze the organic compound to yield a product comprising nanosized cubic lithium lanthanum zirconate.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: March 7, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jon Mark Weller, Candace Chan
  • Publication number: 20220186380
    Abstract: Forming a lithium lanthanum zirconate thin film includes disposing zirconium oxide on a substrate to yield a zirconium oxide coating, contacting the zirconium oxide coating with a solution including a lithium salt and a lanthanum salt, heating the substrate to yield a dried salt coating on the zirconium oxide coating, melting the dried salt coating to yield a molten salt mixture, reacting the molten salt mixture with the zirconium oxide coating to yield lithium lanthanum zirconate, and cooling the lithium lanthanum zirconate to yield a lithium lanthanum zirconate coating on the substrate. In some cases, the zirconium oxide coating is contacted with an aqueous molten salt mixture including a lithium salt and a lanthanum salt, the molten salt mixture is reacted with the zirconium oxide coating to yield lithium lanthanum zirconate, and the lithium lanthanum zirconate is cooled to yield a lithium lanthanum zirconate coating on the substrate.
    Type: Application
    Filed: March 3, 2022
    Publication date: June 16, 2022
    Inventors: Candace Chan, Jon Mark Weller
  • Patent number: 11268196
    Abstract: Forming a lithium lanthanum zirconate thin film includes disposing zirconium oxide on a substrate to yield a zirconium oxide coating, contacting the zirconium oxide coating with a solution including a lithium salt and a lanthanum salt, heating the substrate to yield a dried salt coating on the zirconium oxide coating, melting the dried salt coating to yield a molten salt mixture, reacting the molten salt mixture with the zirconium oxide coating to yield lithium lanthanum zirconate, and cooling the lithium lanthanum zirconate to yield a lithium lanthanum zirconate coating on the substrate. In some cases, the zirconium oxide coating is contacted with an aqueous molten salt mixture including a lithium salt and a lanthanum salt, the molten salt mixture is reacted with the zirconium oxide coating to yield lithium lanthanum zirconate, and the lithium lanthanum zirconate is cooled to yield a lithium lanthanum zirconate coating on the substrate.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: March 8, 2022
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Candace Chan, Jon Mark Weller
  • Publication number: 20210403340
    Abstract: Synthesizing lithium lanthanum zirconate includes combining a reagent composition with a salt composition to yield a molten salt reaction medium, wherein the reagent composition comprises a lithium component, a lanthanum component, and zirconium component having a lithium:lanthanum:zirconium molar ratio of about 7:3:2; heating the molten salt reaction medium to yield a reaction product; and washing the reaction product to yield a crystalline powder comprising lithium lanthanum zirconate.
    Type: Application
    Filed: July 2, 2021
    Publication date: December 30, 2021
    Inventors: Jon Mark Weller, Candace Chan
  • Publication number: 20210371296
    Abstract: Fabricating a layer including lithium lanthanum zirconate (Li7La3Zr2O12) layer includes forming a slurry including lanthanum zirconate (La2Zr2O7) nanocrystals, a lithium precursor, and a lanthanum precursor in stoichiometric amounts to yield a dispersion including lithium, lanthanum, and zirconium. In some cases, the dispersion includes lithium, lanthanum, and zirconium in a molar ratio of 7:3:2. In certain cases, the slurry includes excess lithium. The slurry is dispensed onto a substrate and dried. The dried slurry is calcined to yield the layer including lithium lanthanum zirconate.
    Type: Application
    Filed: August 9, 2021
    Publication date: December 2, 2021
    Inventors: Jon Weller, Candace Chan
  • Patent number: 11084734
    Abstract: Fabricating a layer including lithium lanthanum zirconate (Li7La3Zr2O12) layer includes forming a slurry including lanthanum zirconate (La2Zr2O7) nanocrystals, a lithium precursor, and a lanthanum precursor in stoichiometric amounts to yield a dispersion including lithium, lanthanum, and zirconium. In some cases, the dispersion includes lithium, lanthanum, and zirconium in a molar ratio of 7:3:2. In certain cases, the slurry includes excess lithium. The slurry is dispensed onto a substrate and dried. The dried slurry is calcined to yield the layer including lithium lanthanum zirconate.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: August 10, 2021
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jon Weller, Candace Chan
  • Publication number: 20210230013
    Abstract: Nanosized cubic lithium lanthanum zirconate is synthesized by forming a solution including an organic compound and compounds of lithium, lanthanum, and zirconium; drying the solution to yield a solid; and heating the solid in the presence of oxygen to pyrolyze the organic compound to yield a product comprising nanosized cubic lithium lanthanum zirconate.
    Type: Application
    Filed: December 4, 2020
    Publication date: July 29, 2021
    Inventors: Jon Mark Weller, Candace Chan
  • Patent number: 11053134
    Abstract: Synthesizing lithium lanthanum zirconate includes combining a reagent composition with a salt composition to yield a molten salt reaction medium, wherein the reagent composition comprises a lithium component, a lanthanum component, and zirconium component having a lithium:lanthanum:zirconium molar ratio of about 7:3:2; heating the molten salt reaction medium to yield a reaction product; and washing the reaction product to yield a crystalline powder comprising lithium lanthanum zirconate.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: July 6, 2021
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jon Mark Weller, Candace Chan
  • Patent number: 10858263
    Abstract: Nanosized cubic lithium lanthanum zirconate is synthesized by forming a solution including an organic compound and compounds of lithium, lanthanum, and zirconium; drying the solution to yield a solid; and heating the solid in the presence of oxygen to pyrolyze the organic compound to yield a product comprising nanosized cubic lithium lanthanum zirconate.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: December 8, 2020
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jon Mark Weller, Candace Chan
  • Patent number: 10720642
    Abstract: Exfoliating transition metal oxide lithium intercalation particles having lithium ions intercalated between transition metal oxide nanosheets includes electrochemically oxidizing a transition metal in first transition metal oxide lithium intercalation particles from a first oxidation state to a second oxidation state, inserting first cations having a radius exceeding the radius of a lithium ion into the vacancies, reducing the transition metal from the second oxidation state to the first oxidation state, and exfoliating the transition metal oxide nanosheets from the second transition metal oxide lithium intercalation particles to yield dispersed transition metal oxide nanosheets comprising the transition metal in the first oxidation state and oxygen. The dispersed transition metal oxide nanosheets can be reassembled to yield a material suitable for a lithium-ion battery cathode.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: July 21, 2020
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Candace Chan, Qian Cheng
  • Publication number: 20200131643
    Abstract: Forming a lithium lanthanum zirconate thin film includes disposing zirconium oxide on a substrate to yield a zirconium oxide coating, contacting the zirconium oxide coating with a solution including a lithium salt and a lanthanum salt, heating the substrate to yield a dried salt coating on the zirconium oxide coating, melting the dried salt coating to yield a molten salt mixture, reacting the molten salt mixture with the zirconium oxide coating to yield lithium lanthanum zirconate, and cooling the lithium lanthanum zirconate to yield a lithium lanthanum zirconate coating on the substrate. In some cases, the zirconium oxide coating is contacted with an aqueous molten salt mixture including a lithium salt and a lanthanum salt, the molten salt mixture is reacted with the zirconium oxide coating to yield lithium lanthanum zirconate, and the lithium lanthanum zirconate is cooled to yield a lithium lanthanum zirconate coating on the substrate.
    Type: Application
    Filed: October 31, 2019
    Publication date: April 30, 2020
    Inventors: Candace Chan, Jon Mark Weller
  • Publication number: 20190337817
    Abstract: Fabricating a layer including lithium lanthanum zirconate (Li7La3Zr2O12) layer includes forming a slurry including lanthanum zirconate (La2Zr2O7) nanocrystals, a lithium precursor, and a lanthanum precursor in stoichiometric amounts to yield a dispersion including lithium, lanthanum, and zirconium. In some cases, the dispersion includes lithium, lanthanum, and zirconium in a molar ratio of 7:3:2. In certain cases, the slurry includes excess lithium. The slurry is dispensed onto a substrate and dried. The dried slurry is calcined to yield the layer including lithium lanthanum zirconate.
    Type: Application
    Filed: April 30, 2019
    Publication date: November 7, 2019
    Inventors: Jon Weller, Candace Chan
  • Publication number: 20190062176
    Abstract: Synthesizing lithium lanthanum zirconate includes combining a reagent composition with a salt composition to yield a molten salt reaction medium, wherein the reagent composition comprises a lithium component, a lanthanum component, and zirconium component having a lithium:lanthanum:zirconium molar ratio of about 7:3:2; heating the molten salt reaction medium to yield a reaction product; and washing the reaction product to yield a crystalline powder comprising lithium lanthanum zirconate.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 28, 2019
    Inventors: Jon Mark Weller, Candace Chan
  • Patent number: 10170759
    Abstract: Forming a metal oxide by treating an acidic solution containing a metal to yield a precursor in the form of a semi-liquid, semi-solid or solid, and treating the precursor to yield a product including the metal oxide. An organic or inorganic component may be combined with the precursor to yield a second semi-liquid, semi-solid or solid. The product may be treated to yield a new material. In some cases, the metal oxide has an empirical formula HxM2A1y-A2z, where M represents a transition metal or any combination of transition metals in Groups 3-12; A1 is a first oxyanion; A2 is a second oxyanion; 0?x?3; 0?y?3; 0?z?3; and y+z>0.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: January 1, 2019
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Dong-Kyun Seo, Daniel Mieritz, Candace Chan, Ran Zhao
  • Publication number: 20180362360
    Abstract: Nanosized cubic lithium lanthanum zirconate is synthesized by forming a solution including an organic compound and compounds of lithium, lanthanum, and zirconium; drying the solution to yield a solid; and heating the solid in the presence of oxygen to pyrolyze the organic compound to yield a product comprising nanosized cubic lithium lanthanum zirconate.
    Type: Application
    Filed: June 15, 2018
    Publication date: December 20, 2018
    Inventors: Jon Mark Weller, Candace Chan
  • Patent number: 10128488
    Abstract: An anode for a rechargeable battery includes a Type II clathrate having the formula MxX136, where a cage structure is formed by X, M represents one or more guest ions, and 0<x<24. When x=0, no guest ion is present in the cage structure. X may be Si, Ge, Sn, or a combination thereof. M may be an ion of Na, K, Rb, Cs, Ba, Sr, Ca, Cl, Br, I, Eu, P, Te, Li, Mg, or a combination thereof. A rechargeable battery including the anode (e.g., as an anode) includes a cathode and an electrolyte in contact with the anode and the cathode. Forming the anode may include preparing a composition including the Type II clathrate contacting the composition with a current collector to form the anode. Guest ions may be electrochemically inserted and removed from the cage structure during operation of the rechargeable battery.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: November 13, 2018
    Assignee: Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University
    Inventor: Candace Chan