Patents by Inventor Canfeng Lai

Canfeng Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080188090
    Abstract: A coil is provided for use in a semiconductor processing system to generate a plasma with a magnetic field in a chamber. The coil comprises a first coil segment, a second coil segment and an internal balance capacitor. The first coils segment has a first end and a second end. The first end of the coil segment is adapted to connect to a power source. The second coil segment has a first and second end. The second end of the first coil segment is adapted to connect to an external balance capacitor. The internal balance capacitor is connected in series between the second end of the first coil segment and the first end of the second coil segment. The internal balance capacitor and the coil segments are adapted to provide a voltage peak along the first coil segment substantially aligned with a virtual ground along the second coil segment.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 7, 2008
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Robert Chen, Canfeng Lai, Xinglong Chen, Weiyi Luo, Zhong Qiang Hua, Siqing Lu, Muhammad Rasheed, Qiwei Liang, Dmitry Lubomirsky, Ellie Y. Yieh
  • Publication number: 20080185284
    Abstract: A coil is provided for use in a semiconductor processing system to generate a plasma with a magnetic field in a chamber. The coil comprises a first coil segment, a second coil segment and an internal balance capacitor. The first coils segment has a first end and a second end. The first end of the coil segment is adapted to connect to a power source. The second coil segment has a first and second end. The second end of the first coil segment is adapted to connect to an external balance capacitor. The internal balance capacitor is connected in series between the second end of the first coil segment and the first end of the second coil segment. The internal balance capacitor and the coil segments are adapted to provide a voltage peak along the first coil segment substantially aligned with a virtual ground along the second coil segment.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 7, 2008
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Robert Chen, Canfeng Lai, Xinglong Chen, Weiyi Luo, Zhong Qiang Hua, Siqing Lu, Muhammad Rasheed, Qiwei Liang, Dmitry Lubomirsky, Ellie Y. Yieh
  • Publication number: 20080188087
    Abstract: A coil is provided for use in a semiconductor processing system to generate a plasma with a magnetic field in a chamber. The coil comprises a first coil segment, a second coil segment and an internal balance capacitor. The first coils segment has a first end and a second end. The first end of the coil segment is adapted to connect to a power source. The second coil segment has a first and second end. The second end of the first coil segment is adapted to connect to an external balance capacitor. The internal balance capacitor is connected in series between the second end of the first coil segment and the first end of the second coil segment. The internal balance capacitor and the coil segments are adapted to provide a voltage peak along the first coil segment substantially aligned with a virtual ground along the second coil segment.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 7, 2008
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ROBERT CHEN, Canfeng Lai, Xinglong Chen, Weiyi Luo, Zhong Qiang Hua, Siqing Lu, Muhammad Rasheed, Qiwei Liang, Dmitry Lubomirsky, Ellie Y. Yieh
  • Patent number: 7399707
    Abstract: A continuous in situ process of deposition, etching, and deposition is provided for forming a film on a substrate using a plasma process. The etch-back may be performed without separate plasma activation of the etchant gas. The sequence of deposition, etching, and deposition permits features with high aspect ratios to be filled, while the continuity of the process results in improved uniformity.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: July 15, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Padmanabhan Krishnaraj, Pavel Ionov, Canfeng Lai, Michael Santiago Cox, Shamouil Shamouilian
  • Patent number: 7363876
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: April 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
  • Publication number: 20070037397
    Abstract: A substrate processing system has a housing that defines a process chamber, a gas-delivery system, a high-density plasma generating system, a substrate holder, and a controller. The housing includes a sidewall and a dome positioned above the sidewall. The dome has physically separated and noncontiguous pieces. The gas-delivery system introduces e a gas into the process chamber through side nozzles positioned between two of the physically separated and noncontiguous pieces of the dome. The high-density plasma generating system is operatively coupled with the process chamber. The substrate holder is disposed within the process chamber and supports a substrate during substrate processing. The controller controls the gas-delivery system and the high-density plasma generating system.
    Type: Application
    Filed: August 11, 2005
    Publication date: February 15, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Siqing Lu, Qiwei Liang, Canfeng Lai, Robert Chen, Jason Bloking, Irene Chou, Steven Kim, Young Lee, Ellie Yieh
  • Publication number: 20060177600
    Abstract: A substrate processing system has a housing that defines a process chamber. A substrate holder is disposed within the process chamber and configured to support a substrate within a substrate plane during substrate processing. A gas-delivery system is configured to introduce a gas into the process chamber. A pressure-control system maintains a selected pressure within the process chamber. A high-density-plasma generating system is operatively coupled with the process chamber. A magnetic confinement ring with magnetic dipoles is disposed circumferentially around a symmetry axis orthogonal to the substrate plane and provides a magnetic field with a net dipole moment substantially nonparallel with the substrate plane. A controller controls the gas-delivery system, the pressure-control system, and the high-density plasma system.
    Type: Application
    Filed: February 8, 2005
    Publication date: August 10, 2006
    Applicant: Applied Materials, Inc.
    Inventors: Siqing Lu, Qiwei Liang, Canfeng Lai, Jason Bloking, Ellie Yieh
  • Publication number: 20060150913
    Abstract: A substrate processing system has a housing that defines a process chamber. A substrate holder disposed within the process chamber supports a substrate during substrate processing. A gas-delivery system introduces a gas into the process chamber. A pressure-control system maintains a selected pressure within the process chamber. A high-density plasma generating system forms a plasma having a density greater than 1011 ions/cm3 within the process chamber. A radio-frequency bias system generates an electrical bias on the substrate at a frequency less than 5 MHz. A controller controls the gas-delivery system, the pressure-control system, the high-density plasma generating system, and the radio-frequency bias system.
    Type: Application
    Filed: January 10, 2005
    Publication date: July 13, 2006
    Applicant: Applied Materials, Inc.
    Inventors: Rongping Wang, Canfeng Lai, Yuri Trachuk, Siamak Salimian
  • Publication number: 20060075967
    Abstract: A substrate processing system is provided with a housing defining a process chamber. A substrate holder is disposed within the process chamber and configured to support a substrate during substrate processing. A gas delivery system is configured to introduce a gas into the process chamber. A pressure-control system is provided for maintaining a selected pressure within the process chamber. A high-density-plasma generating system is operatively coupled with the process chamber and includes a coil for inductively coupling energy into a plasma formed within the process chamber. It also includes magneto-dielectric material proximate the coil for concentrating a magnetic field generated by the coil. A controller is also provided for controlling the gas-delivery system, the pressure-control system, and the high-density-plasma generating system.
    Type: Application
    Filed: October 12, 2004
    Publication date: April 13, 2006
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Siqing Lu, Canfeng Lai, Qiwei Liang, Maolin Long, Irene Chou, Jason Bloking, Steven Kim, Ellie Yieh
  • Publication number: 20050124166
    Abstract: A continuous in situ process of deposition, etching, and deposition is provided for forming a film on a substrate using a plasma process. The etch-back may be performed without separate plasma activation of the etchant gas. The sequence of deposition, etching, and deposition permits features with high aspect ratios to be filled, while the continuity of the process results in improved uniformity.
    Type: Application
    Filed: January 13, 2005
    Publication date: June 9, 2005
    Applicants: Applied Materials, Inc., A Delaware corporation
    Inventors: Padmanabhan Krishnaraj, Pavel Ionov, Canfeng Lai, Michael Cox, Shamouil Shamouilian
  • Patent number: 6894474
    Abstract: A probe for measuring plasma properties in a processing chamber, comprises a conductive rod having a front portion and a rear portion. The front portion of the conductive rod comprises a probe surface adapted to be coplanar with an interior wall of the chamber. The probe also includes an insulating sheath circumscribing the conductive rod.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: May 17, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Michael S. Cox, Canfeng Lai, Qiwei Liang
  • Publication number: 20050098115
    Abstract: A substrate processing apparatus is disclosed. In one embodiment, the apparatus includes a first atmospheric deposition station and a second atmospheric deposition station. The second atmospheric deposition station comprises an atmospheric pressure vapor deposition chamber. A substrate handling system is adapted to transfer substrates between the first and the second atmospheric deposition stations.
    Type: Application
    Filed: November 17, 2004
    Publication date: May 12, 2005
    Applicant: Applied Materials, Inc.
    Inventors: Michael Barnes, Michael Cox, Canfeng Lai, John Parks
  • Patent number: 6869880
    Abstract: A continuous in situ process of deposition, etching, and deposition is provided for forming a film on a substrate using a plasma process. The etch-back may be performed without separate plasma activation of the etchant gas. The sequence of deposition, etching, and deposition permits features with high aspect ratios to be filled, while the continuity of the process results in improved uniformity.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: March 22, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Padmanabhan Krishnaraj, Pavel Ionov, Canfeng Lai, Michael Santiago Cox, Shamouil Shamouilian
  • Patent number: 6863019
    Abstract: A method of cleaning a semiconductor fabrication processing chamber involves recirculation of cleaning gas components. Consequently, input cleaning gas is utilized efficiently, and undesirable emissions are reduced. The method includes flowing a cleaning gas to an inlet of a processing chamber, and exposing surfaces of the processing chamber to the cleaning gas to clean the surfaces, thereby producing a reaction product. The method further includes removing an outlet gas including the reaction product from an outlet of the processing chamber, separating at least a portion of the reaction product from the outlet gas, and recirculating a portion of the outlet gas to the inlet of the processing chamber.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: March 8, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Shamouil Shamouilian, Canfeng Lai, Michael Santiago Cox, Padmanabhan Krishnaraj, Tsutomu Tanaka, Sebastien Raoux, Peter I. Porshnev, Thomas Nowak
  • Patent number: 6841006
    Abstract: A substrate processing apparatus is disclosed. In one embodiment, the apparatus includes a first atmospheric deposition station and a second atmospheric deposition station. The second atmospheric deposition station comprises an atmospheric pressure vapor deposition chamber. A substrate handling system is adapted to transfer substrates between the first and the second atmospheric deposition stations.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: January 11, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Michael Barnes, Michael S. Cox, Canfeng Lai, John Parks
  • Publication number: 20040226511
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Application
    Filed: January 30, 2004
    Publication date: November 18, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
  • Publication number: 20040226658
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Application
    Filed: January 30, 2004
    Publication date: November 18, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
  • Publication number: 20040226512
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Application
    Filed: January 30, 2004
    Publication date: November 18, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
  • Publication number: 20040182517
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Application
    Filed: January 30, 2004
    Publication date: September 23, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
  • Publication number: 20040185610
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Application
    Filed: January 30, 2004
    Publication date: September 23, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian