Patents by Inventor Carl D. Schrubbe

Carl D. Schrubbe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085215
    Abstract: A linear magnetic encoder or position sensor having read head with a freely rotatable generally cylindrical bipolar magnet onboard having an axially extending axis of rotation through the center of the sensor magnet that is generally parallel with respect to the longitudinal extent of a plurality of pairs of elongate bar position magnets arranged with alternating opposite magnetic poles facing toward to the read head and sensor magnet that are generally aligned and spaced apart a common fixed distance along a track along which the read head and sensor magnet travels. Magnetic fields extending between the opposite magnetic poles of each pair of position magnets interact with and preferably magnetically couple with a magnetic field of the sensor magnet inducing a force, preferably a torque, therein driving the sensor magnet into rotation as the head and sensor magnet travel along the position magnet pair.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 14, 2024
    Inventors: Carl D. Schrubbe, Jordan G. Schrubbe
  • Patent number: 11846529
    Abstract: A linear magnetic encoder or position sensor having read head with a freely rotatable generally cylindrical bipolar magnet onboard having an axially extending axis of rotation through the center of the sensor magnet that is generally parallel with respect to the longitudinal extent of a plurality of pairs of elongate bar position magnets arranged with alternating opposite magnetic poles facing toward to the read head and sensor magnet that are generally aligned and spaced apart a common fixed distance along a track along which the read head and sensor magnet travels. Magnetic fields extending between the opposite magnetic poles of each pair of position magnets interact with and preferably magnetically couple with a magnetic field of the sensor magnet inducing a force, preferably a torque, therein driving the sensor magnet into rotation as the head and sensor magnet travel along the position magnet pair.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: December 19, 2023
    Assignee: Joral LLC
    Inventors: Carl D. Schrubbe, Jordan G. Schrubbe
  • Patent number: 11519709
    Abstract: A position sensor is configured to use a Wiegand wire, position magnet(s) and a reset magnet in which changes in polarization of the Wiegand wire caused by the position magnet(s) can be reset by the reset magnet. The position magnet(s), which can move in relation to the Wiegand wire, can have relatively stronger magnetic flux densities, and the reset magnet, which can be fixed in relation to the Wiegand wire, can have a relatively weaker magnetic flux density. When the position magnet(s) are proximal the Wiegand wire, the relatively stronger position magnet(s) overcome the reset magnet to cause a change in polarization of the Wiegand wire which produces an electrical pulse which can be counted. However, when the position magnet(s) become distal to the Wiegand wire, the relatively weaker reset magnet can reset the polarization of the Wiegand wire to prepare for a next count.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: December 6, 2022
    Assignee: Joral LLC
    Inventor: Carl D. Schrubbe
  • Publication number: 20220333952
    Abstract: A linear magnetic encoder or position sensor having read head with a freely rotatable generally cylindrical bipolar magnet onboard having an axially extending axis of rotation through the center of the sensor magnet that is generally parallel with respect to the longitudinal extent of a plurality of pairs of elongate bar position magnets arranged with alternating opposite magnetic poles facing toward to the read head and sensor magnet that are generally aligned and spaced apart a common fixed distance along a track along which the read head and sensor magnet travels. Magnetic fields extending between the opposite magnetic poles of each pair of position magnets interact with and preferably magnetically couple with a magnetic field of the sensor magnet inducing a force, preferably a torque, therein driving the sensor magnet into rotation as the head and sensor magnet travel along the position magnet pair.
    Type: Application
    Filed: April 19, 2022
    Publication date: October 20, 2022
    Inventors: Carl D. Schrubbe, Jordan G. Schrubbe
  • Publication number: 20210364270
    Abstract: A position sensor is configured to use a Wiegand wire, position magnet(s) and a reset magnet in which changes in polarization of the Wiegand wire caused by the position magnet(s) can be reset by the reset magnet. The position magnet(s), which can move in relation to the Wiegand wire, can have relatively stronger magnetic flux densities, and the reset magnet, which can be fixed in relation to the Wiegand wire, can have a relatively weaker magnetic flux density. When the position magnet(s) are proximal the Wiegand wire, the relatively stronger position magnet(s) overcome the reset magnet to cause a change in polarization of the Wiegand wire which produces an electrical pulse which can be counted. However, when the position magnet(s) become distal to the Wiegand wire, the relatively weaker reset magnet can reset the polarization of the Wiegand wire to prepare for a next count.
    Type: Application
    Filed: April 5, 2021
    Publication date: November 25, 2021
    Inventor: Carl D. Schrubbe
  • Patent number: 10969214
    Abstract: A position sensor is configured to use a Wiegand wire, position magnet(s) and a reset magnet in which changes in polarization of the Wiegand wire caused by the position magnet(s) can be reset by the reset magnet. The position magnet(s), which can move in relation to the Wiegand wire, can have relatively stronger magnetic flux densities, and the reset magnet, which can be fixed in relation to the Wiegand wire, can have a relatively weaker magnetic flux density. When the position magnet(s) are proximal the Wiegand wire, the relatively stronger position magnet(s) overcome the reset magnet to cause a change in polarization of the Wiegand wire which produces an electrical pulse which can be counted. However, when the position magnet(s) become distal to the Wiegand wire, the relatively weaker reset magnet can reset the polarization of the Wiegand wire to prepare for a next count.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 6, 2021
    Assignee: Joral LLC
    Inventor: Carl D. Schrubbe
  • Patent number: 9964418
    Abstract: By configuring independently controlled clock signals to a plurality of sensors, preferably an angle sensor and a turn sensor, in communication with one another, a wider variety of sensors and sensor combinations can be used while still being able to synchronize output data of the sensors. Independently controlling clock signals of the sensors to selectively control the timing and portion(s) of data being communicated between the sensors enables data of the sensors to be merged, fused or otherwise combined using different types of sensors whose outputted data ordinarily cannot easily be combined.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: May 8, 2018
    Assignee: Joral LLC
    Inventor: Carl D. Schrubbe
  • Publication number: 20180051973
    Abstract: A position sensor is configured to use a Wiegand wire, position magnet(s) and a reset magnet in which changes in polarization of the Wiegand wire caused by the position magnet(s) can be reset by the reset magnet. The position magnet(s), which can move in relation to the Wiegand wire, can have relatively stronger magnetic flux densities, and the reset magnet, which can be fixed in relation to the Wiegand wire, can have a relatively weaker magnetic flux density. When the position magnet(s) are proximal the Wiegand wire, the relatively stronger position magnet(s) overcome the reset magnet to cause a change in polarization of the Wiegand wire which produces an electrical pulse which can be counted. However, when the position magnet(s) become distal to the Wiegand wire, the relatively weaker reset magnet can reset the polarization of the Wiegand wire to prepare for a next count.
    Type: Application
    Filed: October 27, 2017
    Publication date: February 22, 2018
    Inventor: Carl D. Schrubbe
  • Patent number: 9803998
    Abstract: An absolute position sensor having a detector with a plurality of Wiegand wire sensors that each have a pair of Hall sensors bracketing or straddling the Wiegand wire used by a processor in interpolating relative ratios of signals from the bracketing Hall sensors in not only providing increased fine position determination between magnets but also providing coarse position count increment or decrement verification. Such an absolute position sensor provides increased fine position determination accuracy while also enhancing increment and/or decrement error prevention and/or correction during position sensor operation.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: October 31, 2017
    Assignee: Joral LLC
    Inventor: Carl D. Schrubbe
  • Publication number: 20170184420
    Abstract: By configuring independently controlled clock signals to a plurality of sensors, preferably an angle sensor and a turn sensor, in communication with one another, a wider variety of sensors and sensor combinations can be used while still being able to synchronize output data of the sensors. Independently controlling clock signals of the sensors to selectively control the timing and portion(s) of data being communicated between the sensors enables data of the sensors to be merged, fused or otherwise combined using different types of sensors whose outputted data ordinarily cannot easily be combined.
    Type: Application
    Filed: November 10, 2016
    Publication date: June 29, 2017
    Inventor: Carl D. Schrubbe
  • Publication number: 20160302368
    Abstract: A tree harvesting system includes a loader and a delimber. A camera system mounted on the delimber permits an operator to view an interaction area between a delimbing saw or toping saw and the tree being cut while the operator remains safely in a cab of the loader. The camera system provides image data to a display system located in the cab of the loader, and the image data may be viewed and/or processed to provide information about the interaction area, physical data about the tree, or some combination thereof. Advantageously, the tree harvesting system may allow for more accurate saw cuts at a preferred location of the tree, which in turn may result in a higher dollar amount and more efficient distribution of sticks to the mills.
    Type: Application
    Filed: June 27, 2016
    Publication date: October 20, 2016
    Inventors: Carl D. Schrubbe, Robert E. Hill, JR.
  • Patent number: 9374948
    Abstract: A tree harvesting system includes a loader and a delimber. A camera system mounted on the delimber permits an operator to view an interaction area between a delimbing saw or toping saw and the tree being cut while the operator remains safely in a cab of the loader. The camera system provides image data to a display system located in the cab of the loader, and the image data may be viewed and/or processed to provide information about the interaction area, physical data about the tree, or some combination thereof. Advantageously, the tree harvesting system may allow for more accurate saw cuts at a preferred location of the tree, which in turn may result in a higher dollar amount and more efficient distribution of sticks to the mills.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: June 28, 2016
    Inventors: Carl D. Schrubbe, Robert E. Hill, Jr.
  • Patent number: 9018943
    Abstract: A rotary magnetic encoder assembly of noncontact or “contactless” construction having an internally disposed first exciter or sensor magnet magnetically coupled to an externally disposed second application or drive magnet attached to an encoder shaft that rotates the sensor magnet substantially in unison therewith during encoder shaft rotation. The sensor magnet is rotatively supported by a friction reducer that is a bearing arrangement that provides point bearing contact preventing stiction and reducing dynamic friction of the sensor magnet minimizing angle error and helping to prevent “Quiver.” In one embodiment, the friction reducer is a spherical ball bearing. In another embodiment, the friction reducer is a thrust bearing that includes a spindle carrying the sensor magnet. A magnetic anchor can be disposed between the sensor magnet and drive magnet to help keep the sensor magnet in point bearing contact during rotation further minimizing angle error.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 28, 2015
    Assignee: Joral LLC
    Inventor: Carl D. Schrubbe
  • Publication number: 20130233448
    Abstract: A tree harvesting system includes a loader and a delimber. A camera system mounted on the delimber permits an operator to view an interaction area between a delimbing saw or toping saw and the tree being cut while the operator remains safely in a cab of the loader. The camera system provides image data to a display system located in the cab of the loader, and the image data may be viewed and/or processed to provide information about the interaction area, physical data about the tree, or some combination thereof. Advantageously, the tree harvesting system may allow for more accurate saw cuts at a preferred location of the tree, which in turn may result in a higher dollar amount and more efficient distribution of sticks to the mills.
    Type: Application
    Filed: March 6, 2012
    Publication date: September 12, 2013
    Inventors: Carl D. Schrubbe, Robert E. Hill, JR.
  • Patent number: 8294457
    Abstract: A rotary magnetic encoder assembly that has a freewheeling rotatable exciter magnet onboard that excites a magnetic field sensor region of an encoder chip when magnetic interaction between the exciter magnet and rotating encoder shaft causes the exciter magnet to rotate. In one embodiment, a drive magnet carried by the shaft magnetically couples with the exciter magnet because the medium therebetween has low magnetic permeability enabling rotation substantially in unison with the shaft. The exciter magnet is disposed in an onboard retainer pocket that accurately locates the magnet relative to the sensor region of the encoder chip. In one preferred embodiment, the exciter magnet retainer pocket is disposed onboard the encoder chip, such as by being formed as part of the package body of the chip that can be integrally formed or as part of a module that is mountable on the chip.
    Type: Grant
    Filed: September 7, 2008
    Date of Patent: October 23, 2012
    Assignee: Joral LLC
    Inventors: Carl D. Schrubbe, David P. Engsberg
  • Publication number: 20120153940
    Abstract: A rotary magnetic encoder assembly of noncontact or “contactless” construction having an internally disposed first exciter or sensor magnet magnetically coupled to an externally disposed second application or drive magnet attached to an encoder shaft that rotates the sensor magnet substantially in unison therewith during encoder shaft rotation. The sensor magnet is rotatively supported by a friction reducer that is a bearing arrangement that provides point bearing contact preventing stiction and reducing dynamic friction of the sensor magnet minimizing angle error and helping to prevent “Quiver.” In one embodiment, the friction reducer is a spherical ball bearing. In another embodiment, the friction reducer is a thrust bearing that includes a spindle carrying the sensor magnet. A magnetic anchor can be disposed between the sensor magnet and drive magnet to help keep the sensor magnet in point bearing contact during rotation further minimizing angle error.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: Joral LLC
    Inventor: Carl D. Schrubbe
  • Publication number: 20090072816
    Abstract: A rotary magnetic encoder assembly that has a freewheeling rotatable exciter magnet onboard that excites a magnetic field sensor region of an encoder chip when magnetic interaction between the exciter magnet and rotating encoder shaft causes the exciter magnet to rotate. In one embodiment, a drive magnet carried by the shaft magnetically couples with the exciter magnet because the medium therebetween has low magnetic permeability enabling rotation substantially in unison with the shaft. The exciter magnet is disposed in an onboard retainer pocket that accurately locates the magnet relative to the sensor region of the encoder chip. In one preferred embodiment, the exciter magnet retainer pocket is disposed onboard the encoder chip, such as by being formed as part of the package body of the chip that can be integrally formed or as part of a module that is mountable on the chip.
    Type: Application
    Filed: September 7, 2008
    Publication date: March 19, 2009
    Inventors: Carl D. Schrubbe, David P. Engsberg
  • Patent number: 7025328
    Abstract: A damper actuator includes a housing and a hub extending through and rotatably coupled to the housing. The actuator is configured to be a side-mount direct coupled actuator. In one embodiment, an external clamp is coupled to the housing and is configured to be attached to a damper shaft without the damper shaft extending through the hub. A torque transfer mechanism is coupled between the hub and the external clamp such that rotation of the hub results in a corresponding rotation of the damper shaft. In another embodiment, a channel in the actuator housing is configured to accept a damper shaft from the side and the hub includes a removable portion to allow for insertion and removal of the damper shaft.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: April 11, 2006
    Assignee: Johnson Controls Technology Company
    Inventors: Dennis J. Ulicny, Carl D. Schrubbe
  • Publication number: 20020104388
    Abstract: An apparatus for sensing torque between mechanical members that are connected by a circular member, the circular member having a center hub, a first annular section disposed about the center hub and having a first element, and a second annular section disposed about the first annular section and having a second element. Relative rotation occurs between the first and second annular sections in proportion to torsional forces exerted between the mechanical members. As the circular member rotates, first and second sensors produce output signals as the elements pass the sensors, whereupon a detector circuit connected to the sensors detects the phase relationship between the first and second signals. That phase relationship indicates the torque applied between the mechanical members.
    Type: Application
    Filed: February 2, 2001
    Publication date: August 8, 2002
    Inventor: Carl D. Schrubbe