Patents by Inventor Carl L. Hansen

Carl L. Hansen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120065277
    Abstract: A chemostat is described that includes a growth chamber having a plurality of compartments. Each of the compartments may be fluidly isolated from the rest of the growth chamber by one or more actuatable valves. The chemostat may also include a nutrient supply-line to supply growth medium to the growth chamber, and an output port to remove fluids from the growth chamber. Also, a method of preventing biofilm formation in a growth chamber of a chemostat is described. The method may include the steps of adding a lysis agent to a isolated portion of the growth chamber, and reuniting the isolated portion with the rest of the growth chamber.
    Type: Application
    Filed: August 3, 2011
    Publication date: March 15, 2012
    Applicant: California Institute of Technology
    Inventors: Frederick Balagadde, Carl L. Hansen, Emil Kartalov, Stephen R. Quake
  • Publication number: 20120061305
    Abstract: Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.
    Type: Application
    Filed: June 28, 2011
    Publication date: March 15, 2012
    Applicant: California Institute of Technology
    Inventors: Stephen R. Quake, Joshua S. Marcus, Carl L. Hansen
  • Publication number: 20120046639
    Abstract: A static fluid and a second fluid are placed into contact along a microfluidic free interface and allowed to mix by diffusion without convective flow across the interface. In accordance with one embodiment of the present invention, the fluids are static and initially positioned on either side of a closed valve structure in a microfluidic channel having a width that is tightly constrained in at least one dimension. The valve is then opened, and no-slip layers at the sides of the microfluidic channel suppress convective mixing between the two fluids along the resulting interface. Applications for microfluidic free interfaces in accordance with embodiments of the present invention include, but are not limited to, protein crystallization studies, protein solubility studies, determination of properties of fluidics systems, and a variety of biological assays such as diffusive immunoassays, substrate turnover assays, and competitive binding assays.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 23, 2012
    Applicants: The Regents of the University of California, California Institute of Technology
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Publication number: 20120009663
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certain devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyses, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Application
    Filed: November 16, 2010
    Publication date: January 12, 2012
    Applicant: California Institute of Technology
    Inventors: Markus M. Enzelberger, Carl L. Hansen, Jian Liu, Stephen R. Quake, Chiem Ma
  • Publication number: 20110306522
    Abstract: The use of microfluidic structures enables high throughput screening of protein crystallization. In one embodiment, an integrated combinatoric mixing chip allows for precise metering of reagents to rapidly create a large number of potential crystallization conditions, with possible crystal formations observed on chip. In an alternative embodiment, the microfluidic structures may be utilized to explore phase space conditions of a particular protein crystallizing agent combination, thereby identifying promising conditions and allowing for subsequent focused attempts to obtain crystal growth.
    Type: Application
    Filed: April 15, 2011
    Publication date: December 15, 2011
    Applicant: California Institute of Technology
    Inventors: Carl L. Hansen, Morten Sommer, Stephen R. Quake
  • Patent number: 8052792
    Abstract: The present invention relates to microfluidic devices and methods facilitating the growth and analysis of crystallized materials such as proteins. In accordance with one embodiment, a crystal growth architecture is separated by a permeable membrane from an adjacent well having a much larger volume. The well may be configured to contain a fluid having an identity and concentration similar to the solvent and crystallizing agent employed in crystal growth, with diffusion across the membrane stabilizing that process. Alternatively, the well may be configured to contain a fluid having an identity calculated to affect the crystallization process. In accordance with the still other embodiment, the well may be configured to contain a material such as a cryo-protectant, which is useful in protecting the crystalline material once formed.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: November 8, 2011
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Patent number: 8021480
    Abstract: A static fluid and a second fluid are placed into contact along a microfluidic free interface and allowed to mix by diffusion without convective flow across the interface. In accordance with one embodiment of the present invention, the fluids are static and initially positioned on either side of a closed valve structure in a microfluidic channel having a width that is tightly constrained in at least one dimension. The valve is then opened, and no-slip layers at the sides of the microfluidic channel suppress convective mixing between the two fluids along the resulting interface. Applications for microfluidic free interfaces in accordance with embodiments of the present invention include, but are not limited to, protein crystallization studies, protein solubility studies, determination of properties of fluidics systems, and a variety of biological assays such as diffusive immunoassays, substrate turnover assays, and competitive binding assays.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: September 20, 2011
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Patent number: 8017353
    Abstract: A chemostat is described that includes a growth chamber having a plurality of compartments. Each of the compartments may be fluidly isolated from the rest of the growth chamber by one or more actuatable valves. The chemostat may also include a nutrient supply-line to supply growth medium to the growth chamber, and an output port to remove fluids from the growth chamber. Also, a method of preventing biofilm formation in a growth chamber of a chemostat is described. The method may include the steps of adding a lysis agent to a isolated portion of the growth chamber, and reuniting the isolated portion with the rest of the growth chamber.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: September 13, 2011
    Assignee: California Institute of Technology
    Inventors: Frederick Balagadde, Carl L. Hansen, Emil Kartalov, Stephen R. Quake
  • Patent number: 7964139
    Abstract: A microfluidic device comprises a matrix of rotary flow reactors. The microfluidic matrix device offers a solution to the “world-to-chip” interface problem by accomplishing two important goals simultaneously: an economy of scale in reagent consumption is achieved, while simultaneously minimizing pipetting steps. N2 independent assays can be performed with only 2N+1 pipetting steps, using a single aliquot of enzyme amortized over all reactors. The chip reduces labor relative to conventional fluid handling techniques by using an order of magnitude less pipetting steps, and reduces cost by consuming two to three orders of magnitude less reagents per reaction. A PCR format has immediate applications in medical diagnosis and gene testing. Beyond PCR, the microfluidic matrix chip provides a universal and flexible platform for biological and chemical assays requiring parsimonious use of precious reagents and highly automated processing.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: June 21, 2011
    Assignee: California Institute of Technology
    Inventors: Jian Liu, Carl L. Hansen, Stephen R. Quake
  • Patent number: 7927422
    Abstract: The use of microfluidic structures enables high throughput screening of protein crystallization. In one embodiment, an integrated combinatoric mixing chip allows for precise metering of reagents to rapidly create a large number of potential crystallization conditions, with possible crystal formations observed on chip. In an alternative embodiment, the microfluidic structures may be utilized to explore phase space conditions of a particular protein crystallizing agent combination, thereby identifying promising conditions and allowing for subsequent focused attempts to obtain crystal growth.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: April 19, 2011
    Assignees: National Institutes of Health (NIH), The United States of America as represented by the Dept. of Health and Human Services (DHHS), U.S. Government NIH Division of Extramural Inventions and Technology Resources (DEITR)
    Inventors: Carl L. Hansen, Morten Sommer, Stephen R. Quake
  • Patent number: 7833708
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certaom devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyses, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: November 16, 2010
    Assignee: California Institute of Technology
    Inventors: Markus M. Enzelberger, Carl L. Hansen, Jian Liu, Stephen R. Quake, Chiem Ma
  • Publication number: 20100263732
    Abstract: A static fluid and a second fluid are placed into contact along a microfluidic free interface and allowed to mix by diffusion without convective flow across the interface. In accordance with one embodiment of the present invention, the fluids are static and initially positioned on either side of a closed valve structure in a microfluidic channel having a width that is tightly constrained in at least one dimension. The valve is then opened, and no-slip layers at the sides of the microfluidic channel suppress convective mixing between the two fluids along the resulting interface. Applications for microfluidic free interfaces in accordance with embodiments of the present invention include, but are not limited to, protein crystallization studies, protein solubility studies, determination of properties of fluidics systems, and a variety of biological assays such as diffusive immunoassays, substrate turnover assays, and competitive binding assays.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 21, 2010
    Applicants: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Patent number: 7766055
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 3, 2010
    Assignee: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Patent number: 7754010
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 13, 2010
    Assignee: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Publication number: 20100104477
    Abstract: A microfluidic device comprises a matrix of rotary flow reactors. The microfluidic matrix device offers a solution to the “world-to-chip” interface problem by accomplishing two important goals simultaneously: an economy of scale in reagent consumption is achieved, while simultaneously minimizing pipetting steps. N2 independent assays can be performed with only 2N+1 pipetting steps, using a single aliquot of enzyme amortized over all reactors. The chip reduces labor relative to conventional fluid handling techniques by using an order of magnitude less pipetting steps, and reduces cost by consuming two to three orders of magnitude less reagents per reaction. A PCR format has immediate applications in medical diagnosis and gene testing. Beyond PCR, the microfluidic matrix chip provides a universal and flexible platform for biological and chemical assays requiring parsimonious use of precious reagents and highly automated processing.
    Type: Application
    Filed: July 23, 2009
    Publication date: April 29, 2010
    Applicant: California Institute of Technology
    Inventors: Jian Liu, Carl L. Hansen, Stephen R. Quake
  • Patent number: 7704322
    Abstract: A static fluid and a second fluid are placed into contact along a microfluidic free interface and allowed to mix by diffusion without convective flow across the interface. In accordance with one embodiment of the present invention, the fluids are static and initially positioned on either side of a closed valve structure in a microfluidic channel having a width that is tightly constrained in at least one dimension. The valve is then opened, and no-slip layers at the sides of the microfluidic channel suppress convective mixing between the two fluids along the resulting interface. Applications for microfluidic free interfaces in accordance with embodiments of the present invention include, but are not limited to, protein crystallization studies, protein solubility studies, determination of properties of fluidics systems, and a variety of biological assays such as diffusive immunoassays, substrate turnover assays, and competitive binding assays.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: April 27, 2010
    Assignee: California Institute of Technology
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Patent number: 7670429
    Abstract: High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: March 2, 2010
    Assignee: The California Institute of Technology
    Inventors: Stephen R. Quake, Carl L. Hansen, James M. Berger
  • Publication number: 20090168066
    Abstract: The use of microfluidic structures enables high throughput screening of protein crystallization. In one embodiment, an integrated combinatoric mixing chip allows for precise metering of reagents to rapidly create a large number of potential crystallization conditions, with possible crystal formations observed on chip. In an alternative embodiment, the microfluidic structures may be utilized to explore phase space conditions of a particular protein crystallizing agent combination, thereby identifying promising conditions and allowing for subsequent focused attempts to obtain crystal growth.
    Type: Application
    Filed: December 2, 2008
    Publication date: July 2, 2009
    Applicant: California Institute of Technology
    Inventors: Carl L. Hansen, Morten Sommer, Stephen R. Quake
  • Publication number: 20090151422
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 18, 2009
    Applicant: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
  • Publication number: 20090087356
    Abstract: A microfluidic device comprises a matrix of rotary flow reactors. The microfluidic matrix device offers a solution to the “world-to-chip” interface problem by accomplishing two important goals simultaneously: an economy of scale in reagent consumption is achieved, while simultaneously minimizing pipetting steps. N2 independent assays can be performed with only 2N+1 pipetting steps, using a single aliquot of enzyme amortized over all reactors. The chip reduces labor relative to conventional fluid handling techniques by using an order of magnitude less pipetting steps, and reduces cost by consuming two to three orders of magnitude less reagents per reaction. A PCR format has immediate applications in medical diagnosis and gene testing. Beyond PCR, the microfluidic matrix chip provides a universal and flexible platform for biological and chemical assays requiring parsimonious use of precious reagents and highly automated processing.
    Type: Application
    Filed: August 15, 2008
    Publication date: April 2, 2009
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Jian Liu, Carl L. Hansen, Stephen R. Quake