Patents by Inventor Carl Vause

Carl Vause has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230405843
    Abstract: Exemplary embodiments provide enhancements for soft robotic actuators. In some embodiments, angular adjustment systems are provided for varying an angle between an actuator and the hub, or between two actuators. The angular adjustment system may also be used to vary a relative distance or spacing between actuators. According to further embodiments, rigidizing layers are provided for reinforcing one or more portions of an actuator at one or more locations of relatively high strain. According to further embodiments, force amplification structures are provided for increasing an amount of force applied by an actuator to a target. The force amplification structures may serve to shorten the length of the actuator that is subject to bending upon inflation. According to still further embodiments, gripping pads are provided for customizing an actuator's gripping profile to better conform to the surfaces of items to be gripped.
    Type: Application
    Filed: July 10, 2023
    Publication date: December 21, 2023
    Inventors: Joshua Aaron Lessing, Ryan Knopf, Carl Vause
  • Patent number: 11738471
    Abstract: Exemplary embodiments provide enhancements for soft robotic actuators. In some embodiments, angular adjustment systems are provided for varying an angle between an actuator and the hub, or between two actuators. The angular adjustment system may also be used to vary a relative distance or spacing between actuators. According to further embodiments, rigidizing layers are provided for reinforcing one or more portions of an actuator at one or more locations of relatively high strain. According to further embodiments, force amplification structures are provided for increasing an amount of force applied by an actuator to a target. The force amplification structures may serve to shorten the length of the actuator that is subject to bending upon inflation. According to still further embodiments, gripping pads are provided for customizing an actuator's gripping profile to better conform to the surfaces of items to be gripped.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: August 29, 2023
    Assignee: SOFT ROBOTICS, INC.
    Inventors: Joshua Aaron Lessing, Ryan Knopf, Carl Vause
  • Publication number: 20220088801
    Abstract: Exemplary embodiments provide enhancements for soft robotic actuators. In some embodiments, angular adjustment systems are provided for varying an angle between an actuator and the hub, or between two actuators. The angular adjustment system may also be used to vary a relative distance or spacing between actuators. According to further embodiments, rigidizing layers are provided for reinforcing one or more portions of an actuator at one or more locations of relatively high strain. According to further embodiments, force amplification structures are provided for increasing an amount of force applied by an actuator to a target. The force amplification structures may serve to shorten the length of the actuator that is subject to bending upon inflation. According to still further embodiments, gripping pads are provided for customizing an actuator's gripping profile to better conform to the surfaces of items to be gripped.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 24, 2022
    Inventors: Joshua Aaron Lessing, Ryan Knopf, Carl Vause
  • Patent number: 11110616
    Abstract: Exemplary embodiments provide enhancements for soft robotic actuators. In some embodiments, angular adjustment systems are provided for varying an angle between an actuator and the hub, or between two actuators. The angular adjustment system may also be used to vary a relative distance or spacing between actuators. According to further embodiments, rigidizing layers are provided for reinforcing one or more portions of an actuator at one or more locations of relatively high strain. According to further embodiments, force amplification structures are provided for increasing an amount of force applied by an actuator to a target. The force amplification structures may serve to shorten the length of the actuator that is subject to bending upon inflation. According to still further embodiments, gripping pads are provided for customizing an actuator's gripping profile to better conform to the surfaces of items to be gripped.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: September 7, 2021
    Assignee: SOFT ROBOTICS, INC.
    Inventors: Joshua Aaron Lessing, Ryan Knopf, Carl Vause
  • Publication number: 20190168399
    Abstract: Exemplary embodiments provide enhancements for soft robotic actuators. In some embodiments, angular adjustment systems are provided for varying an angle between an actuator and the hub, or between two actuators. The angular adjustment system may also be used to vary a relative distance or spacing between actuators. According to further embodiments, rigidizing layers are provided for reinforcing one or more portions of an actuator at one or more locations of relatively high strain. According to further embodiments, force amplification structures are provided for increasing an amount of force applied by an actuator to a target. The force amplification structures may serve to shorten the length of the actuator that is subject to bending upon inflation. According to still further embodiments, gripping pads are provided for customizing an actuator's gripping profile to better conform to the surfaces of items to be gripped.
    Type: Application
    Filed: December 5, 2018
    Publication date: June 6, 2019
    Inventors: Joshua Aaron Lessing, Ryan Knopf, Carl Vause
  • Patent number: 10189168
    Abstract: Exemplary embodiments provide enhancements for soft robotic actuators. In some embodiments, angular adjustment systems are provided for varying an angle between an actuator and the hub, or between two actuators. The angular adjustment system may also be used to vary a relative distance or spacing between actuators. According to further embodiments, rigidizing layers are provided for reinforcing one or more portions of an actuator at one or more locations of relatively high strain. According to further embodiments, force amplification structures are provided for increasing an amount of force applied by an actuator to a target. The force amplification structures may serve to shorten the length of the actuator that is subject to bending upon inflation. According to still further embodiments, gripping pads are provided for customizing an actuator's gripping profile to better conform to the surfaces of items to be gripped.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: January 29, 2019
    Assignee: Soft Robotics, Inc.
    Inventors: Joshua Aaron Lessing, Ryan Knopf, Carl Vause
  • Patent number: 10172602
    Abstract: Exemplary embodiments describe soft robotic actuators for medical use, such as during surgeries and other medical procedures. According to one embodiment, a soft robotic incision retractor is provided. According to another embodiment, a soft robotic body tissue retractor is provided. The incision retractor and body tissue retractor may be used together, for example by using the incision retractor to hold open an incision while the body tissue retractor manipulates biological matter or an object accessible through the incision. Described embodiments offer the ability to conform to a given space, reduced risk of damage to surrounding structures as compared to traditional retractors, the ability to deliver varying amounts of force, the ability to be made from medically safe materials, and the potential for re-use or disposability.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: January 8, 2019
    Assignee: SOFT ROBOTICS, INC.
    Inventors: Joshua Aaron Lessing, Ryan Richard Knopf, Marc Graham, Carl Vause
  • Publication number: 20180325507
    Abstract: Exemplary embodiments describe soft robotic actuators for medical use, such as during surgeries and other medical procedures. According to one embodiment, a soft robotic incision retractor provided. According to another embodiment, a soft robotic body tissue retractor is provided. The incision retractor and body tissue retractor may be used together, for example by using the incision retractor to hold open an incision while the body tissue retractor manipulates biological matter or an object accessible through the incision. Described embodiments offer the ability to conform to a given space, reduced risk of damage to surrounding structures as compared to traditional retractors, the ability to deliver varying amounts of force, the ability to be made from medically safe materials, and the potential for re-use or disposability.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 15, 2018
    Inventors: Joshua Aaron LESSING, Ryan Richard KNOPF, Marc GRAHAM, Carl VAUSE
  • Patent number: 10028734
    Abstract: Exemplary embodiments describe soft robotic actuators for medical use, such as during surgeries and other medical procedures. According to one embodiment, a soft robotic incision retractor is provided. According to another embodiment, a soft robotic body tissue retractor is provided. The incision retractor and body tissue refractor may be used together, for example by using the incision retractor to hold open an incision while the body tissue retractor manipulates biological matter or an object accessible through the incision. Described embodiments offer the ability to conform to a given space, reduced risk of damage to surrounding structures as compared to traditional retractors, the ability to deliver varying amounts of force, the ability to be made from medically safe materials, and the potential for re-use or disposability.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: July 24, 2018
    Assignee: SOFT ROBOTICS, INC.
    Inventors: Joshua Aaron Lessing, Ryan Richard Knopf, Marc Graham, Carl Vause
  • Publication number: 20160136820
    Abstract: Exemplary embodiments provide enhancements for soft robotic actuators. In some embodiments, angular adjustment systems are provided for varying an angle between an actuator and the hub, or between two actuators. The angular adjustment system may also be used to vary a relative distance or spacing between actuators. According to further embodiments, rigidizing layers are provided for reinforcing one or more portions of an actuator at one or more locations of relatively high strain. According to further embodiments, force amplification structures are provided for increasing an amount of force applied by an actuator to a target. The force amplification structures may serve to shorten the length of the actuator that is subject to bending upon inflation. According to still further embodiments, gripping pads are provided for customizing an actuator's gripping profile to better conform to the surfaces of items to be gripped.
    Type: Application
    Filed: November 18, 2015
    Publication date: May 19, 2016
    Inventors: Joshua Aaron Lessing, Ryan Knopf, Carl Vause
  • Publication number: 20160135799
    Abstract: Exemplary embodiments describe soft robotic actuators for medical use, such as during surgeries and other medical procedures. According to one embodiment, a soft robotic incision retractor is provided. According to another embodiment, a soft robotic body tissue retractor is provided. The incision retractor and body tissue refractor may be used together, for example by using the incision retractor to hold open an incision while the body tissue retractor manipulates biological matter or an object accessible through the incision. Described embodiments offer the ability to conform to a given space, reduced risk of damage to surrounding structures as compared to traditional retractors, the ability to deliver varying amounts of force, the ability to be made from medically safe materials, and the potential for re-use or disposability.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 19, 2016
    Inventors: Joshua Aaron Lessing, Ryan Richard Knopf, Marc Graham, Carl Vause