Patents by Inventor Carlo S. Effenhauser

Carlo S. Effenhauser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7691245
    Abstract: A microfluidic device for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electrolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: April 6, 2010
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Patent number: 6960286
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electrolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: November 1, 2005
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Patent number: 6730202
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CRE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electrolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: May 4, 2004
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Patent number: 6706164
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electrolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: March 16, 2004
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Patent number: 6699377
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: March 2, 2004
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Patent number: 6699378
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electrolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: March 2, 2004
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Patent number: 6491804
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: December 10, 2002
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Patent number: 6423198
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: July 23, 2002
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Publication number: 20020036140
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Application
    Filed: November 28, 2001
    Publication date: March 28, 2002
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Publication number: 20020027075
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Application
    Filed: December 13, 2000
    Publication date: March 7, 2002
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Publication number: 20010025793
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Application
    Filed: December 22, 2000
    Publication date: October 4, 2001
    Applicant: Ciba-Geigy Corporation
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Publication number: 20010023824
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Application
    Filed: December 22, 2000
    Publication date: September 27, 2001
    Applicant: Ciba-Geigy Corporation
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Patent number: 6280589
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: April 12, 1994
    Date of Patent: August 28, 2001
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Publication number: 20010008213
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Application
    Filed: February 9, 2001
    Publication date: July 19, 2001
    Applicant: Ciba-Geigh Corporation
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Publication number: 20010004963
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Application
    Filed: January 31, 2001
    Publication date: June 28, 2001
    Applicant: CIBA-Geigy Corporation
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Publication number: 20010004964
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electrolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Application
    Filed: February 9, 2001
    Publication date: June 28, 2001
    Applicant: Ciba-Geigy Corporation
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Patent number: 5741639
    Abstract: A device for combined bioaffinity assay and electrophoretic separation is provided, which comprises a capillary system having two stages, a first stage in which bioaffinity interactions of analyte molecules and molecular recognition elements are performed, and a second stage, in which electrophoretic separation of the analyte molecules and subsequent detection of the separated species is accomplished. Within the first capillary stage the molecular recognition elements are attached and immobilized to the inside capillary wall, for example, by adsorption or by covalent binding to the capillary material. The method for combined bioaffinity assay and electrophoretic separation comprises flowing an analyte through a capillary system having two stages. In a first capillary stage the analyte molecules are captured by respective molecular recognition elements present in that stage.
    Type: Grant
    Filed: February 28, 1995
    Date of Patent: April 21, 1998
    Assignee: Ciba-Geigy Corp.
    Inventors: Kees Ensing, Peter Oroszlan, Aran Paulus, Carlo S. Effenhauser
  • Patent number: 5636017
    Abstract: An optical detection arrangement for small volume chemical analysis comprises a light source (22), a capillary tube (23) and a photoelectric detector (24). The arrangement of the light source (22) relative to the capillary tube (23) is such, that probing light (P) emitted from the light source (22) strikes a sample (S) to be analyzed, which is flowing through the capillary tube (23), whereas the photoelectric detector (24) is arranged relative to the capillary tube (23) such, that it is capable of detecting light comming from the capillary tube. The photoelectric detector (24) is connected with an evaluation electronics.
    Type: Grant
    Filed: March 11, 1994
    Date of Patent: June 3, 1997
    Assignee: Ciba-Geigy Corporation
    Inventors: Alfredo E. Bruno, Beat Krattiger, Carlo S. Effenhauser, Francois Maystre, Philippe Nussbaum
  • Patent number: 5599432
    Abstract: A device for the electrophoretic separation of complex fluid substance mixtures comprises a channel system (21, 2, 22) for a carrier medium (C), an injection device (3) for the injection into the carrier medium (C) of a substance mixture (S) to be separated, and a separating path (2) for the separation of the substance mixture (S) in an electric field applied along the separating path (2). Downstream of the injection device (3) for the substance mixture (S) to be separated and at a distance therefrom there is provided a second separating path (4) for the further separation of the substance mixture (S) in an electric field applied along the second separating path (4). The second separating path (4) is inclined at an angle (.alpha.) with respect to the first separating path (2). The region of intersection of the first (2) and second (4) separating paths forms a second injection device (5) for injecting the partially separated substance mixture (S) into a second carrier medium (E).
    Type: Grant
    Filed: November 8, 1994
    Date of Patent: February 4, 1997
    Assignee: Ciba-Geigy Corporation
    Inventors: Andreas Manz, Carlo S. Effenhauser