Patents by Inventor Carmel Majidi

Carmel Majidi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200061845
    Abstract: The present invention relates to a gripping apparatus comprising a membrane; a flexible housing; with said membrane being fixedly connected to a periphery of the housing. The invention further relates to a method of producing a gripping apparatus.
    Type: Application
    Filed: May 2, 2018
    Publication date: February 27, 2020
    Inventors: Sukho Song, Metin Sitti, Dirk-Michael Drotlef, Carmel Majidi
  • Patent number: 10554154
    Abstract: An electrostatic clutch is described comprising a plurality of micron-scale thickness electrodes, adjacent electrodes being separated by a thin film of dielectric material. A power source and controller apply a voltage across two electrodes, causing an electrostatic force to develop. When engaged, a force can be transferred through the clutch. A tensioning device maintains the alignment of the clutch when the electrodes are disengaged, but permits movement in at least one direction. In some embodiments, multiple clutches are connected to an output to provide variable force control and a broad range of torque input and output values. Moreover, the clutch can be used as an energy-recycling actuator that captures mechanical energy from negative work movements, and returns energy during positive work movements.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: February 4, 2020
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Carmel Majidi, Steven Collins, Stuart Diller
  • Publication number: 20200029428
    Abstract: A flexible and stretchable integrated electronic device comprising a substrate having a stiffness gradient, wherein a rigid electronic device is embedded within the substrate. The stiffness gradient within the substrate prevents delamination at the interface between the substrate and the embedded device. A method of fabricating an integrated electronic device having a stiffness gradient comprises applying a curing agent to an uncured polymer base material.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 23, 2020
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Gary K. Fedder, Carmel Majidi, Philip R. LeDuc, Lee E. Weiss, Christopher J. Bettinger, Naser Naserifar
  • Publication number: 20190363648
    Abstract: An electrostatic clutch is described comprising a plurality of micron-scale thickness electrodes, adjacent electrodes being separated by a thin film of dielectric material. A power source and controller apply a voltage across two electrodes, causing an electrostatic force to develop. When engaged, a force can be transferred through the clutch. A tensioning device maintains the alignment of the clutch when the electrodes are disengaged, but permits movement in at least one direction. In some embodiments, multiple clutches are connected to an output to provide variable force control and a broad range of torque input and output values. Moreover, the clutch can be used as an energy-recycling actuator that captures mechanical energy from negative work movements, and returns energy during positive work movements.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 28, 2019
    Applicant: CARNEGIE MELLON UNIVERSITY, a Pennsylvania Non-Profit Corporation
    Inventors: Carmel Majidi, Steven Collins, Stuart Diller
  • Patent number: 10462897
    Abstract: A flexible and stretchable integrated electronic device comprising a substrate having a stiffness gradient, wherein a rigid electronic device is embedded within the substrate. The stiffness gradient within the substrate prevents delamination at the interface between the substrate and the embedded device. A method of fabricating an integrated electronic device having a stiffness gradient comprises applying a curing agent to an uncured polymer base material.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: October 29, 2019
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Gary K. Fedder, Carmel Majidi, Philip R. LeDuc, Lee E. Weiss, Christopher J. Bettinger, Naser Naserifar
  • Publication number: 20190319556
    Abstract: An electrostatic clutch is described comprising a plurality of micron-scale thickness electrodes, adjacent electrodes being separated by a thin film of dielectric material. A power source and controller apply a voltage across two electrodes, causing an electrostatic force to develop. When engaged, a force can be transferred through the clutch. A tensioning device maintains the alignment of the clutch when the electrodes are disengaged, but permits movement in at least one direction. In some embodiments, multiple clutches are connected to an output to provide variable force control and a broad range of torque input and output values. Moreover, the clutch can be used as an energy-recycling actuator that captures mechanical energy from negative work movements, and returns energy during positive work movements.
    Type: Application
    Filed: June 3, 2019
    Publication date: October 17, 2019
    Applicant: CARNEGIE MELLON UNIVERSITY, a Pennsylvania Non-Profit Corporation
    Inventors: Carmel Majidi, Steven Collins, Stuart Diller
  • Patent number: 10355624
    Abstract: An electrostatic clutch is described comprising a plurality of micron-scale thickness electrodes, adjacent electrodes being separated by a thin film of dielectric material. A power source and controller apply a voltage across two electrodes, causing an electrostatic force to develop. When engaged, a force can be transferred through the clutch. A tensioning device maintains the alignment of the clutch when the electrodes are disengaged, but permits movement in at least one direction. In some embodiments, multiple clutches are connected to an output to provide variable force control and a broad range of torque input and output values. Moreover, the clutch can be used as an energy-recycling actuator that captures mechanical energy from negative work movements, and returns energy during positive work movements.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: July 16, 2019
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Carmel Majidi, Steven Collins, Stuart Diller
  • Publication number: 20190215965
    Abstract: A fabrication process for soft-matter printed circuit boards is disclosed in which traces of liquid-phase Ga—In eutectic (eGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically-aligned columns of eGaIn-coated ferromagnetic microspheres that are embedded within an interfacial elastomer layer.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 11, 2019
    Inventors: Carmel Majidi, Tong Lu, Eric J. Markvicka
  • Patent number: 10336042
    Abstract: Disclosed herein is a composite comprising a conductive elastomer and an isolating elastomer. When a current is passed through the conductive elastomer, its tensile modulus decreases as the elastomer heats from internal Joule heating, changing the rigidity of the composite. When the current is no longer present, the elastomer cools and the rigidity of the composite returns to its original state.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: July 2, 2019
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Carmel Majidi, Wanliang Shan
  • Publication number: 20190082532
    Abstract: Disclosed herein is an efficient fabrication approach to create highly customizable wearable electronics through rapid laser machining and adhesion-controlled soft materials assembly. Well-aligned, multi-layered materials can be created from 2D and 3D elements that stretch and bend while seamlessly integrating with rigid components such as microchip integrated circuits (IC), discrete electrical components, and interconnects. These techniques are applied using commercially available materials. These materials and methods enable custom wearable electronics while offering versatility in design and functionality for a variety of bio-monitoring applications.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 14, 2019
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Carmel Majidi, Michael D. Bartlett, Eric J. Markvicka
  • Publication number: 20180206336
    Abstract: A flexible and stretchable integrated electronic device comprising a substrate having a stiffness gradient, wherein a rigid electronic device is embedded within the substrate. The stiffness gradient within the substrate prevents delamination at the interface between the substrate and the embedded device. A method of fabricating an integrated electronic device having a stiffness gradient comprises applying a curing agent to an uncured polymer base material.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 19, 2018
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Gary K. Fedder, Carmel Majidi, Philip R. LeDuc, Lee E. Weiss, Christopher J. Bettinger, Naser Naserifar
  • Publication number: 20170218167
    Abstract: Disclosed herein is a composite comprising an elastomer with an embedded network of liquid metal inclusions. The composite retains similar flexibility to that of an elastomer but exhibits electrical and thermal properties that differ from the properties of a homogeneous elastomer. The composite has applications for wearable devices and other soft matter electronics, among others.
    Type: Application
    Filed: February 2, 2017
    Publication date: August 3, 2017
    Applicant: CARNEGIE MELLON UNIVERSITY, a Pennsylvania Non-Profit Corporation
    Inventors: Carmel Majidi, Andrew Fassler, Michael Bartlett, Navid Kazem, Matthew J. Powell-Palm, Jonathan A. Malen
  • Publication number: 20170222576
    Abstract: An electrostatic clutch is described comprising a plurality of micron-scale thickness electrodes, adjacent electrodes being separated by a thin film of dielectric material. A power source and controller apply a voltage across two electrodes, causing an electrostatic force to develop. When engaged, a force can be transferred through the clutch. A tensioning device maintains the alignment of the clutch when the electrodes are disengaged, but permits movement in at least one direction. In some embodiments, multiple clutches are connected to an output to provide variable force control and a broad range of torque input and output values. Moreover, the clutch can be used as an energy-recycling actuator that captures mechanical energy from negative work movements, and returns energy during positive work movements.
    Type: Application
    Filed: April 10, 2017
    Publication date: August 3, 2017
    Applicant: CARNEGIE MELLON UNIVERSITY, a Pennsylvania Non-Profit Corporation
    Inventors: Carmel Majidi, Steven Collins, Stuart Diller
  • Publication number: 20170217139
    Abstract: Disclosed herein is a composite comprising a conductive elastomer and an isolating elastomer. When a current is passed through the conductive elastomer, its tensile modulus decreases as the elastomer heats from internal Joule heating, changing the rigidity of the composite. When the current is no longer present, the elastomer cools and the rigidity of the composite returns to its original state.
    Type: Application
    Filed: February 2, 2017
    Publication date: August 3, 2017
    Applicant: CARNEGIE MELLON UNIVERSITY, a Pennsylvania Non-Profit Corporation
    Inventors: Carmel Majidi, Wanliang Shan
  • Publication number: 20160234931
    Abstract: The disclosure describes a soft-matter electronic device having micron-scale features, and methods to fabricate the electronic device. In some embodiments, the device comprises an elastomer mold having microchannels, which are filled with an eutectic alloy to create an electrically conductive element. The microchannels are sealed with a polymer to prevent the alloy from escaping the microchannels. In some embodiments, the alloy is drawn into the microchannels using a micro-transfer printing technique. Additionally, the molds can be created using soft-lithography or other fabrication techniques. The method described herein allows creation of micron-scale circuit features with a line width and spacing that is an order-of-magnitude smaller than those previously demonstrated.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 11, 2016
    Applicant: CARNEGIE MELLON UNIVERSITY, a Pennsylvania Non-Pro fit Corporation
    Inventors: Carmel Majidi, Burak Ozdoganlar, Arya Tabatabai, Bulent Arda Gozen
  • Patent number: 9228822
    Abstract: A hyperelastic, soft microfluidic film measures bending curvature using a novel non-differential mechanism. Disclosed embodiments of the elastomer-based solution allows for curvature sensing directly on a bending plane and thus eliminates limitations imposed by strain gauge factor (GF) and sensor thickness (Z). Due to soft lithography microfabrication and design methods the disclosed curvature sensors are elastically soft (modulus 0.1-1 MPa) and stretchable (100-1000% strain). In contrast to existing curvature sensors that measure differential strain, embodiments of the present invention measures curvature directly and allows for arbitrary gauge factor and film thickness. Moreover, the sensor is composed entirely of soft elastomer (PDMS or Ecoflex® and conductive liquid (eutectic gallium indium, (eGaIn)) and thus remains functional even when stretched to several times its natural length.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: January 5, 2016
    Assignee: President and Fellows of Harvard College
    Inventors: Carmel Majidi, Rebecca K. Kramer, Robert J. Wood
  • Publication number: 20150088043
    Abstract: A flexible orthotic device includes two or more active components embedded in a sheet material. Each active component can include a controller and one or more actuation elements controlled by the controller. The two or more active components can communicate with each other and cause the active components to contract and dynamically change the structural characteristics of the orthotic device. By coordinating the motion of two or more active components, the flexible orthotic device can be programmed to assist or resist the motion of a subject wearing the device. The orthotic device can be effectively employed to provide locomotion assistance, gait rehabilitation, and gait training. Similarly, the orthotic device may be applied to the wrist, elbow, torso, or any other body part. The active components may be actuated to effectively transmit force to a body part, such as a limb, to assist with movement when desired.
    Type: Application
    Filed: September 1, 2012
    Publication date: March 26, 2015
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Eugene C. Goldfield, Yong-lae Park, Bor-rong Chen, Carmel Majidi, Robert J. Wood, Radhika Nagpal
  • Publication number: 20130312541
    Abstract: A hyperelastic, soft microfluidic film measures bending curvature using a novel non-differential mechanism. Disclosed embodiments of the elastomer-based solution allows for curvature sensing directly on a bending plane and thus eliminates limitations imposed by strain gauge factor (GF) and sensor thickness (Z). Due to soft lithography microfabrication and design methods the disclosed curvature sensors are elastically soft (modulus 0.1-1 MPa) and stretchable (100-1000% strain). In contrast to existing curvature sensors that measure differential strain, embodiments of the present invention measures curvature directly and allows for arbitrary gauge factor and film thickness. Moreover, the sensor is composed entirely of soft elastomer (PDMS or Ecoflex® and conductive liquid (eutectic gallium indium, (eGaIn)) and thus remains functional even when stretched to several times its natural length.
    Type: Application
    Filed: January 24, 2012
    Publication date: November 28, 2013
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Carmel Majidi, Rebecca K. Kramer, Robert J. Wood
  • Patent number: 8309201
    Abstract: A fabricated nano-structure includes a substrate, a supporting stalk, a node, and at least two spatular plate portions. The supporting stalk has a first end opposite a second end. The first end of the supporting stalk is connected to the substrate. The supporting stalk has a diameter range of about 50 nanometers to about 2 microns. A node is disposed at the second end of the supporting stalk. At least two spatular plate portions are connected to the node. The at least two spatular plate portions have planar geometries and are radially distributed about the node. The at least two spatular plate portions has a ratio of a maximum plate thickness to a maximum plate length of at most about 1:20. The maximum plate length is measured along a line from a boundary of the spatular plate portion to a centroid of the node. The maximum plate length is at least about 100 nanometers.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: November 13, 2012
    Assignee: The Regents of the University of California
    Inventors: Carmel Majidi, Richard Groff, Ronald S. Fearing
  • Patent number: 7914912
    Abstract: Described herein is a microstructure having a substrate and a plurality of nano-fibers attached to the substrate. Each nano-fiber moves between the first and second states without an external mechanical load being applied to the nano-fibers. Each nano-fiber is configured to move between a first state and a second state in response to applied electricity, magnetism, chemical solution, heat, or light. Each nano-fiber is straight in the first state and curved in the second state, and when the nano-fibers are in the second state and in contact with a contact surface, the nano-fibers adhere to the contact surface.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: March 29, 2011
    Assignee: The Regents of the University of California
    Inventors: Ronald S. Fearing, Abraham Bachrach, Richard Groff, Carmel Majidi