Patents by Inventor Carol Hirschmugl

Carol Hirschmugl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9236633
    Abstract: A composition of graphene-based nanomaterials and a method of preparing the composition are provided. A carbon-based precursor is dissolved in water to form a precursor suspension. The precursor suspension is placed onto a substrate, thereby forming a precursor assembly. The precursor assembly is annealed, thereby forming the graphene-based nanomaterials. The graphene-based nanomaterials are crystallographically ordered at least in part and configured to form a plurality of diffraction rings when probed by an incident electron beam. In one aspect, the graphene-based nanomaterials are semiconducting. In one aspect, a method of engineering an energy bandgap of graphene monoxide generally includes providing at least one atomic layer of graphene monoxide having a first energy bandgap, and applying a substantially planar strain is applied to the graphene monoxide, thereby tuning the first energy band gap to a second energy bandgap.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 12, 2016
    Assignee: UWM Research Foundation, Inc.
    Inventors: Junhong Chen, Marija Gajdardziska-Josifovska, Carol Hirschmugl, Eric Mattson, Haihui Pu, Michael Weinert
  • Publication number: 20130344390
    Abstract: A composition of graphene-based nanomaterials and a method of preparing the composition are provided. A carbon-based precursor is dissolved in water to form a precursor suspension. The precursor suspension is placed onto a substrate, thereby forming a precursor assembly. The precursor assembly is annealed, thereby forming the graphene-based nanomaterials. The graphene-based nanomaterials are crystallographically ordered at least in part and configured to form a plurality of diffraction rings when probed by an incident electron beam. In one aspect, the graphene-based nanomaterials are semiconducting. In one aspect, a method of engineering an energy bandgap of graphene monoxide generally includes providing at least one atomic layer of graphene monoxide having a first energy bandgap, and applying a substantially planar strain is applied to the graphene monoxide, thereby tuning the first energy band gap to a second energy bandgap.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 26, 2013
    Inventors: Junhong Chen, Marija Gajdardziska-Josifovska, Carol Hirschmugl, Eric Mattson, Haihui Pu, Michael Weinert