Patents by Inventor Catherine Asleson Dundon

Catherine Asleson Dundon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230312253
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Application
    Filed: May 19, 2023
    Publication date: October 5, 2023
    Applicant: CARGILL, INCORPORATED
    Inventors: Catherine Asleson DUNDON, Pirkko SUOMINEN, Aristos ARISTIDOU, Brian J. RUSH, Kari KOIVURANTA, Benjamin Matthew HAUSE, Thomas William McMULLIN, Kevin ROBERG-PEREZ
  • Patent number: 11691817
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: July 4, 2023
    Assignee: CARGILL, INCORPORATED
    Inventors: Catherine Asleson Dundon, Pirkko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Publication number: 20230049887
    Abstract: The invention relates to methods and compositions for the recombinant production of animal protein for use in animal food, particularly pet food.
    Type: Application
    Filed: January 29, 2020
    Publication date: February 16, 2023
    Inventors: Karin Pernilla Turner Audibert, Richard W. Kelleman, II, Anthony George Day, Julie Marie Struble, Ryan Michael Yamka, Catherine Asleson Dundon, Luis N. Brandao
  • Publication number: 20210155411
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Application
    Filed: January 21, 2021
    Publication date: May 27, 2021
    Applicant: Cargill, Incorporated
    Inventors: Catherine Asleson DUNDON, Pirrko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Patent number: 10899544
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: January 26, 2021
    Assignee: CARGILL, INCORPORATED
    Inventors: Catherine Asleson Dundon, Pirrko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Publication number: 20200377302
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Application
    Filed: March 30, 2018
    Publication date: December 3, 2020
    Applicant: Cargill Incorporated
    Inventors: Catherine Asleson Dundon, Pirrko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Publication number: 20200236971
    Abstract: The invention relates to methods and compositions for the recombinant production of animal protein for use in animal food, particularly pet food.
    Type: Application
    Filed: January 29, 2020
    Publication date: July 30, 2020
    Inventors: Karin Pernilla Turner Audibert, Richard W. Kelleman, III, Anthony George Day, Julie Marie Struble, Ryan Michael Yamka, Catherine Asleson Dundon
  • Publication number: 20180257864
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Application
    Filed: March 30, 2018
    Publication date: September 13, 2018
    Applicant: Cargill Incorporated
    Inventors: Catherine Asleson Dundon, Pirrko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Publication number: 20180179557
    Abstract: The present invention provides recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise a modification resulting in the reduction of pyruvate decarboxylase and/or glycerol-3-phosphate dehydrogenase activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 28, 2018
    Inventors: Reid FELDMAN, Uvini GUNAWARDENA, Jun URANO, Peter MEINHOLD, Aristos ARISTIDOU, Catherine Asleson DUNDON, Christopher SMITH
  • Patent number: 9926577
    Abstract: The present invention provides recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise a modification resulting in the reduction of pyruvate decarboxylase and/or glycerol-3-phosphate dehydrogenase activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: March 27, 2018
    Assignee: Gevo, Inc.
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos Aristidou, Catherine Asleson Dundon, Christopher Smith
  • Patent number: 9657315
    Abstract: The present invention relates to recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise one or more modifications resulting in the reduction in the expression and/or activity of an endogenous transporter protein. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: May 23, 2017
    Assignees: VIB VZW, KATHOLIEKE UNIVERSITEIT LEUVEN, K.U.LEUVEN R&D
    Inventors: Catherine Asleson Dundon, Christopher Smith, Piruz Nahreini, Johan Thevelein, Sofie Saerens
  • Patent number: 9506074
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces Glade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: November 29, 2016
    Assignee: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Publication number: 20160108441
    Abstract: The present invention relates to recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise one or more modifications resulting in the reduction in the expression and/or activity of an endogenous transporter protein. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Catherine Asleson Dundon, Christopher Smith, Piruz Nahreini, Johan Thevelein, Sofie Saerens
  • Patent number: 9249420
    Abstract: The present invention relates to recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise one or more modifications resulting in the reduction in the expression and/or activity of an endogenous transporter protein. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: February 2, 2016
    Assignees: VIB VZW, KATHOLIEKE UNIVERSITEIT LEUVEN, K.U. LEUVEN R&D
    Inventors: Catherine Asleson Dundon, Christopher Smith, Piruz Nahreini, Johan Thevelein, Sofie Saerens
  • Publication number: 20150315616
    Abstract: Yeast cells are genetically modified to disrupt a native metabolic pathway from dihydroxyacetone to glycerol. In certain aspects, the yeast cell is of the genera Kluyveromyces, Candida or Issatchenkia. In other aspects, the yeast cell is capable of producing at least one organic acid, such as lactate. The yeast cells produce significantly less glycerol than the wild-type strains, and usually produce greater yields of desired fermentation products. Yeast cells of the invention often grow well when cultivated, despite their curtailed glycerol production.
    Type: Application
    Filed: May 25, 2015
    Publication date: November 5, 2015
    Inventors: Catherine Asleson Dundon, Pirrko Suominen, Aristos Aristidou, Brian J. Rush, Kari Koivuranta, Benjamin Matthew Hause, Thomas William McMullin, Kevin Roberg-Perez
  • Publication number: 20150259710
    Abstract: The present invention relates to recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise at least one nucleic acid molecule encoding a polypeptide with keto-isovalerate decarboxylase (KIVD) activity, wherein said polypeptide is at least about 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to a polypeptide selected from SEQ ID NOs: 1-214. Also provided are modified decarboxylases exhibiting an improved ability to utilize ?-ketoisovalerate as a substrate in various beneficial enzymatic conversions.
    Type: Application
    Filed: July 30, 2012
    Publication date: September 17, 2015
    Applicant: Gevo, Inc.
    Inventors: Catherine Asleson Dundon, Kevin Roberg-Perez, Christopher Snow, Peter Meinhold
  • Publication number: 20150218596
    Abstract: The present invention provides recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise a modification resulting in the reduction of pyruvate decarboxylase and/or glycerol-3-phosphate dehydrogenase activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: September 10, 2014
    Publication date: August 6, 2015
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos Aristidou, Catherine Asleson Dundon, Christopher Smith
  • Publication number: 20150152443
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Aft proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Application
    Filed: July 1, 2014
    Publication date: June 4, 2015
    Inventors: Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins, Doug Lies, Lynne H. Albert
  • Publication number: 20140308721
    Abstract: The present invention provides recombinant microorganisms comprising isobutanol producing metabolic pathway with at least one isobutanol pathway enzyme localized in the cytosol, wherein said recombinant microorganism is selected to produce isobutanol from a carbon source. Methods of using said recombinant microorganisms to produce isobutanol are also provided. In various aspects of the invention, the recombinant microorganisms may comprise a cytosolically active isobutanol pathway enzymes. In some embodiments, the invention provides mutated, modified, and/or chimeric isobutanol pathway enzymes with cytosolic activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: January 17, 2014
    Publication date: October 16, 2014
    Applicant: Gevo, Inc.
    Inventors: Jun Urano, Catherine Asleson Dundon, Peter Meinhold, Reid M. Renny Feldman, Aristos A. Aristidou, Andrew Hawkins, Thomas Buelter, Matthew Peters, Doug Lies, Stephanie Porter-Scheinman, Christopher Smith, Ruth Berry, Ishmeet Kalra
  • Publication number: 20140212953
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces Glade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: September 19, 2013
    Publication date: July 31, 2014
    Applicant: GEVO, Inc.
    Inventors: Thomas BUELTER, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Kent Evans, Julie Kelly, Ruth Berry