Patents by Inventor Causon Ko-Chuan Jen

Causon Ko-Chuan Jen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923169
    Abstract: A method for implanting high charge state ions into a workpiece while mitigating trace metal contamination includes generating desired ions at a first charge state from a desired species in an ion source, as well as generating trace metal ions of a contaminant species in a first ion beam. A charge-to-mass ratio of the desired ions and the trace metal ions is equal. The desired ions and trace metal ions are extracted from the ion source. At least one electron stripped from the desired ions to define a second ion beam of the desired ions at a second charge state and the trace metal ions. Only the desired ions from the second ion beam are selectively passed only through a charge selector to define a final ion beam of the desired ions at the second charge state and no trace metal ions, and the desired ions of the second charge state are implanted into a workpiece.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: March 5, 2024
    Assignee: Axcelis Technologies, Inc.
    Inventors: Causon Ko-Chuan Jen, Shu Satoh, Genise Bonacorsi, William Bintz
  • Publication number: 20210249222
    Abstract: A method for implanting high charge state ions into a workpiece while mitigating trace metal contamination includes generating desired ions at a first charge state from a desired species in an ion source, as well as generating trace metal ions of a contaminant species in a first ion beam. A charge-to-mass ratio of the desired ions and the trace metal ions is equal. The desired ions and trace metal ions are extracted from the ion source. At least one electron stripped from the desired ions to define a second ion beam of the desired ions at a second charge state and the trace metal ions. Only the desired ions from the second ion beam are selectively passed only through a charge selector to define a final ion beam of the desired ions at the second charge state and no trace metal ions, and the desired ions of the second charge state are implanted into a workpiece.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 12, 2021
    Inventors: Causon Ko-Chuan Jen, Shu Satoh, Genise Bonacorsi, William Bintz
  • Patent number: 10799587
    Abstract: A composition for neutron capture therapy and a method of preparing the same are provided. The composition includes at least one nanodiamond particle and at least one neutron capture element, in which the at least one neutron capture element is embedded into the at least one nanodiamond particle by using an ion implantation system.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: October 13, 2020
    Inventors: Huan Niu, Chien Hsu Chen, Causon Ko-Chuan Jen
  • Patent number: 10403503
    Abstract: An ion implantation system has a first chamber and a process chamber with a heated chuck. A controller transfers the workpiece between the heated chuck and first chamber and selectively energizes the heated chuck first and second modes. In the first and second modes, the heated chuck is heated to a first and second temperature, respectively. The first temperature is predetermined. The second temperature is variable, whereby the controller determines the second temperature based on a thermal budget, an implant energy, and/or an initial temperature of the workpiece in the first chamber, and generally maintains the second temperature in the second mode. Transferring the workpiece from the heated chuck to the first chamber removes implant energy from the process chamber in the second mode. Heat may be further transferred from the heated chuck to a cooling platen by a transfer of the workpiece therebetween to sequentially cool the heated chuck.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: September 3, 2019
    Assignee: Axcelis Technologies, Inc.
    Inventors: Marvin Farley, Mike Ameen, Causon Ko-Chuan Jen
  • Publication number: 20180233367
    Abstract: An ion implantation system has a first chamber and a process chamber with a heated chuck. A controller transfers the workpiece between the heated chuck and first chamber and selectively energizes the heated chuck first and second modes. In the first and second modes, the heated chuck is heated to a first and second temperature, respectively. The first temperature is predetermined. The second temperature is variable, whereby the controller determines the second temperature based on a thermal budget, an implant energy, and/or an initial temperature of the workpiece in the first chamber, and generally maintains the second temperature in the second mode. Transferring the workpiece from the heated chuck to the first chamber removes implant energy from the process chamber in the second mode. Heat may be further transferred from the heated chuck to a cooling platen by a transfer of the workpiece therebetween to sequentially cool the heated chuck.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Inventors: Marvin Farley, Mike Ameen, Causon Ko-Chuan Jen
  • Patent number: 9978599
    Abstract: An ion implantation system has a first chamber and a process chamber with a heated chuck. A controller transfers the workpiece between the heated chuck and first chamber and selectively energizes the heated chuck first and second modes. In the first and second modes, the heated chuck is heated to a first and second temperature, respectively. The first temperature is predetermined. The second temperature is variable, whereby the controller determines the second temperature based on a thermal budget, an implant energy, and/or an initial temperature of the workpiece in the first chamber, and generally maintains the second temperature in the second mode. Transferring the workpiece from the heated chuck to the first chamber removes implant energy from the process chamber in the second mode. Heat may be further transferred from the heated chuck to a cooling platen by a transfer of the workpiece therebetween to sequentially cool the heated chuck.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: May 22, 2018
    Assignee: Axcelis Technologies, Inc.
    Inventors: Marvin Farley, Mike Ameen, Causon Ko-Chuan Jen
  • Publication number: 20170352544
    Abstract: An ion implantation system has a first chamber and a process chamber with a heated chuck. A controller transfers the workpiece between the heated chuck and first chamber and selectively energizes the heated chuck first and second modes. In the first and second modes, the heated chuck is heated to a first and second temperature, respectively. The first temperature is predetermined. The second temperature is variable, whereby the controller determines the second temperature based on a thermal budget, an implant energy, and/or an initial temperature of the workpiece in the first chamber, and generally maintains the second temperature in the second mode. Transferring the workpiece from the heated chuck to the first chamber removes implant energy from the process chamber in the second mode. Heat may be further transferred from the heated chuck to a cooling platen by a transfer of the workpiece therebetween to sequentially cool the heated chuck.
    Type: Application
    Filed: May 31, 2017
    Publication date: December 7, 2017
    Inventors: Marvin Farley, Mike Ameen, Causon Ko-Chuan Jen
  • Publication number: 20170326236
    Abstract: A composition for neutron capture therapy and a method of preparing the same are provided. The composition includes at least one nanodiamond particle and at least one neutron capture element, in which the at least one neutron capture element is embedded into the at least one nanodiamond particle by using an ion implantation system.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 16, 2017
    Inventors: Huan NIU, Chien Hsu Chen, Causon Ko-Chuan Jen
  • Patent number: 9455116
    Abstract: An ion implantation system and method is provided for varying an angle of incidence of a scanned ion beam relative to the workpiece concurrent with the scanned ion beam impacting the workpiece. The system has an ion source configured to form an ion beam and a mass analyzer configured to mass analyze the ion beam. An ion beam scanner is configured to scan the ion beam in a first direction, therein defining a scanned ion beam. A workpiece support is configured to support a workpiece thereon, and an angular implant apparatus is configured to vary an angle of incidence of the scanned ion beam relative to the workpiece. The angular implant apparatus comprises one or more of an angular energy filter and a mechanical apparatus operably coupled to the workpiece support, wherein a controller controls the angular implant apparatus, thus varying the angle of incidence of the scanned ion beam relative to the workpiece concurrent with the scanned ion beam impacting the workpiece.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: September 27, 2016
    Assignee: Axcells Technologies, Inc.
    Inventors: Causon Ko-Chuan Jen, William Bintz
  • Patent number: 9218941
    Abstract: An ion implantation system and method for implanting ions at varying energies across a workpiece is provided. The system comprises an ion source configured to ionize a dopant gas into a plurality of ions and to form an ion beam. A mass analyzer is positioned downstream of the ion source and configured to mass analyze the ion beam. A deceleration/acceleration stage is positioned downstream of the mass analyzer. An energy filter may form part of the deceleration/acceleration stage or may positioned downstream of the deceleration/acceleration stage. An end station is provided having a workpiece support associated therewith for positioning the workpiece before the ion beam is also provided. A scanning apparatus is configured to scan one or more of the ion beam and workpiece support with respect to one another. One or more power sources are operably coupled to one or more of the ion source, mass analyzer, deceleration/acceleration stage, and energy filter.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: December 22, 2015
    Assignee: Axcelis Technologies, Inc.
    Inventors: Causon Ko-Chuan Jen, Marvin Farley
  • Publication number: 20150318142
    Abstract: An ion implantation system and method is provided for varying an angle of incidence of a scanned ion beam relative to the workpiece concurrent with the scanned ion beam impacting the workpiece. The system has an ion source configured to form an ion beam and a mass analyzer configured to mass analyze the ion beam. An ion beam scanner is configured to scan the ion beam in a first direction, therein defining a scanned ion beam. A workpiece support is configured to support a workpiece thereon, and an angular implant apparatus is configured to vary an angle of incidence of the scanned ion beam relative to the workpiece. The angular implant apparatus comprises one or more of an angular energy filter and a mechanical apparatus operably coupled to the workpiece support, wherein a controller controls the angular implant apparatus, thus varying the angle of incidence of the scanned ion beam relative to the workpiece concurrent with the scanned ion beam impacting the workpiece.
    Type: Application
    Filed: April 21, 2015
    Publication date: November 5, 2015
    Inventors: Causon Ko-Chuan Jen, William Bintz
  • Publication number: 20150200073
    Abstract: An ion implantation system and method for implanting ions at varying energies across a workpiece is provided. The system comprises an ion source configured to ionize a dopant gas into a plurality of ions and to form an ion beam. A mass analyzer is positioned downstream of the ion source and configured to mass analyze the ion beam. A deceleration/acceleration stage is positioned downstream of the mass analyzer. An energy filter may form part of the deceleration/acceleration stage or may positioned downstream of the deceleration/acceleration stage. An end station is provided having a workpiece support associated therewith for positioning the workpiece before the ion beam is also provided. A scanning apparatus is configured to scan one or more of the ion beam and workpiece support with respect to one another. One or more power sources are operably coupled to one or more of the ion source, mass analyzer, deceleration/acceleration stage, and energy filter.
    Type: Application
    Filed: December 29, 2014
    Publication date: July 16, 2015
    Inventors: Causon Ko-Chuan Jen, Marvin Farley
  • Patent number: 9057129
    Abstract: A variable aperture within an aperture device is used to shape the ion beam before the substrate is implanted by shaped ion beam, especially to finally shape the ion beam in a position right in front of the substrate. Hence, different portions of a substrate, or different substrates, can be implanted respectively by different shaped ion beams without going through using multiple fixed apertures or retuning the ion beam each time. In other words, different implantations may be achieved respectively by customized ion beams without high cost (use multiple fixed aperture devices) and complex operation (retuning the ion beam each time). Moreover, the beam tune process for acquiring a specific ion beam to be implanted may be accelerated, to be faster than using multiple fixed aperture(s) and/or retuning the ion beam each time, because the adjustment of the variable aperture may be achieved simply by mechanical operation.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: June 16, 2015
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Zhimin Wan, John D. Pollock, Donald Wayne Berrian, Causon Ko-Chuan Jen
  • Publication number: 20140161987
    Abstract: A variable aperture within an aperture device is used to shape the ion beam before the substrate is implanted by shaped ion beam, especially to finally shape the ion beam in a position right in front of the substrate. Hence, different portions of a substrate, or different substrates, can be implanted respectively by different shaped ion beams without going through using multiple fixed apertures or retuning the ion beam each time. In other words, different implantations may be achieved respectively by customized ion beams without high cost (use multiple fixed aperture devices) and complex operation (retuning the ion beam each time). Moreover, the beam tune process for acquiring a specific ion beam to be implanted may be accelerated, to be faster than using multiple fixed aperture(s) and/or retuning the ion beam each time, because the adjustment of the variable aperture may be achieved simply by mechanical operation.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: ADVANCED ION BEAM TECHNOLOGY., INC.
    Inventors: ZHIMIN WAN, JOHN D. POLLOCK, DONALD WAYNE BERRIAN, CAUSON KO-CHUAN JEN
  • Patent number: 8669539
    Abstract: A variable aperture within an aperture device is used to shape the ion beam before the substrate is implanted by shaped ion beam, especially to finally shape the ion beam in a position right in front of the substrate. Hence, different portions of a substrate, or different substrates, can be implanted respectively by different shaped ion beams without going through using multiple fixed apertures or retuning the ion beam each time. In other words, different implantations may be achieved respectively by customized ion beams without high cost (use multiple fixed aperture devices) and complex operation (retuning the ion beam each time). Moreover, the beam tune process for acquiring a specific ion beam to be implanted may be accelerated, to be faster than using multiple fixed aperture(s) and/or retuning the ion beam each time, because the adjustment of the variable aperture may be achieved simply by mechanical operation.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: March 11, 2014
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Zhimin Wan, John D. Pollock, Don Berrian, Causon Ko-Chuan Jen
  • Publication number: 20110278478
    Abstract: To form one or more dose region(s) on a workpiece, a projected area of an ion beam on the workpiece is initially moved parallel to a long axis of the projected area from an edge of the workpiece to an opposite edge of the workpiece, and then is moved parallel to a short axis of the projected area a shifted distance shorter than the short axis of the projected area. Thereafter, repeat the moving step and the shifting step in sequence until all dose region(s) is completely formed. Accordingly, the cross-sectional size of the projected area is only proportional to the short axis when it is moved along its long axis. Hence, it is similar to use a narrow pen to paint a wall, and then it is suitable for forming different dose regions with different doses on a workpiece, such as the dose split.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 17, 2011
    Inventor: Causon Ko-Chuan JEN
  • Publication number: 20110233431
    Abstract: A variable aperture within an aperture device is used to shape the ion beam before the substrate is implanted by shaped ion beam, especially to finally shape the ion beam in a position right in front of the substrate. Hence, different portions of a substrate, or different substrates, can be implanted respectively by different shaped ion beams without going through using multiple fixed apertures or retuning the ion beam each time. In other words, different implantations may be achieved respectively by customized ion beams without high cost (use multiple fixed aperture devices) and complex operation (retuning the ion beam each time). Moreover, the beam tune process for acquiring a specific ion beam to be implanted may be accelerated, to be faster than using multiple fixed aperture(s) and/or retuning the ion beam each time, because the adjustment of the variable aperture may be achieved simply by mechanical operation.
    Type: Application
    Filed: March 29, 2010
    Publication date: September 29, 2011
    Inventors: Zhimin WAN, John D. Pollock, Don Berrian, Causon Ko-Chuan Jen
  • Patent number: 6639227
    Abstract: A charged particle filter provides a curved through path and has both magnetic poles for applying a magnetic field normal to the plane of curvature of the path and electrodes for applying a radial electric field. The filter is used as an energy filter downstream of an accelerator in an ion implanter. The filter can be set to provide a range of energy dispersions, to operate as an achromatic bend, or to reject lower charge state ions.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: October 28, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Hilton Glavish, Causon Ko-Chuan Jen