Patents by Inventor Cecil R. Robinson

Cecil R. Robinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100129859
    Abstract: An automated machine for handling and embedding tissue samples contained on microtome sectionable supports. The machine includes an input member configured to hold a plurality of the microtome sectionable supports prior to a tissue embedding operation. An output member is configured to hold a plurality of the microtome sectionable supports after the tissue embedding operation. A cooling unit is configured to hold at least one of the microtome sectionable supports during the tissue embedding operation. A motorized carrier assembly is mounted for movement and configured to hold at least one of the microtome sectionable supports. The carrier assembly moves the support from the input member to the cooling unit and, finally, to the output member. A dispensing device dispenses an embedding material onto the microtome sectionable support and at least one tissue sample carried by the microtome sectionable support during the embedding operation.
    Type: Application
    Filed: January 29, 2010
    Publication date: May 27, 2010
    Applicant: BIOPATH AUTOMATION, L.L.C.
    Inventors: Douglas P. Allen, Dominic P. DiNovo, Matthew J. Huddleston, Kenneth E. Hughes, George A. Keller, Keith A. Kuisick, Rebeccah P. Quam, Cecil R. Robinson, Jonathan E. Turner, Ernest D. VanHoose, Thomas J. Ward, Warren P. Williamson, IV
  • Patent number: 7722810
    Abstract: An automated machine for handling and embedding tissue samples contained on microtome sectionable supports. The machine includes an input member configured to hold a plurality of the microtome sectionable supports prior to a tissue embedding operation. An output member is configured to hold a plurality of the microtome sectionable supports after the tissue embedding operation. A cooling unit is configured to hold at least one of the microtome sectionable supports during the tissue embedding operation. A motorized carrier assembly is mounted for movement and configured to hold at least one of the microtome sectionable supports. The carrier assembly moves the support from the input member to the cooling unit and, finally, to the output member. A dispensing device dispenses an embedding material onto the microtome sectionable support and at least one tissue sample carried by the microtome sectionable support during the embedding operation.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: May 25, 2010
    Assignee: Biopath Automation, LLC
    Inventors: Douglas P. Allen, Dominic P. DiNovo, Matthew J. Huddleston, Kenneth E. Hughes, George A. Keller, Keith A. Kuisick, Rebeccah P. Quam, Cecil R. Robinson, Jonathan E. Turner, Ernest D. VanHoose, Thomas J. Ward, Warren P. Williamson, IV
  • Patent number: 7722642
    Abstract: Wire fasteners having legs with lengths that can be one hundred times the width of the fastener are used to secure items, such as prosthesis valves to a patient during minimally invasive surgery. The fasteners are manipulated into position and then are immobilized by means of the legs thereof for tensioning, cutting and forming in situ. The fasteners are manipulated, tensioned and formed from the leg end of the fasteners. Tools for initially placing the fasteners and for immobilizing, tensioning, cutting and bending the fastener legs are disclosed. Once the fasteners are initially placed, the prosthesis is placed on the long legs of the placed fasteners and is guided into position on the legs. Once the prosthesis is in position, the legs of the fasteners are immobilized, tensioned, cut and bent into staple-like shapes to secure the prosthesis to the patient. A method for carrying out the procedure using the long fastener is also disclosed.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: May 25, 2010
    Assignee: Medtronic, Inc.
    Inventors: Warren P. Williamson, IV, Paul A. Spence, George A. Keller, Cecil R. Robinson, Thomas J. Ward
  • Patent number: 6884251
    Abstract: An anastomosis is performed using a flexible mounting structure mounted on the outside of at least one vessel. Fasteners extend through the vessel and are bent towards the incision to attach the flexible mounting structure to the vessel in a manner that controls the edge of the vessel adjacent to the incision. The mounting structures are oriented on each vessel so fasteners on one mounting structure interdigitate with fasteners on the other mounting structure at the location of contact between the vessels when the two vessels are brought together. This creates two complementary sinusoidal-shaped vessel edges with peaks of one edge being accommodated in the valleys of the other edge. The peak-to-valley orientation forms a sinusoidal-shaped joint which is leak free. The fasteners are spaced so proper pressure is applied to the tissue to promote healing without leaking. Furthermore, the fasteners are sized and shaped to properly engage the tissue and bend in a desired manner.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: April 26, 2005
    Assignee: Origin Medsystems, Inc.
    Inventors: Paul A. Spence, Warren P. Williamson, IV, George Christakis, Mark Ortiz, Craig B. Berky, Douglas P. Allen, Matthew J. Huddleston, Delbert Ted Leimbach, Cecil R. Robinson, E. Dale VanHoose, Thomas J. Ward, Marty J. Warnecke
  • Publication number: 20040167573
    Abstract: Wire fasteners having legs with lengths that can be one hundred times the width of the fastener are used to secure items, such as prosthesis valves to a patient during minimally invasive surgery. The fasteners are manipulated into position and then are immobilized by means of the legs thereof for tensioning, cutting and forming in situ. The fasteners are manipulated, tensioned and formed from the leg end of the fasteners. Tools for initially placing the fasteners and for immobilizing, tensioning, cutting and bending the fastener legs are disclosed. Once the fasteners are initially placed, the prosthesis is placed on the long legs of the placed fasteners and is guided into position on the legs. Once the prosthesis is in position, the legs of the fasteners are immobilized, tensioned, cut and bent into staple-like shapes to secure the prosthesis to the patient. A method for carrying out the procedure using the long fastener is also disclosed.
    Type: Application
    Filed: February 25, 2004
    Publication date: August 26, 2004
    Applicant: CardvioVascular Technologies, L.L.C.
    Inventors: Warren P. Williamson, Paul A. Spence, George A. Keller, Cecil R. Robinson, Thomas J. Ward
  • Publication number: 20030153932
    Abstract: An anastomosis is performed using a flexible mounting structure mounted on the outside of at least one vessel. Fasteners extend through the vessel and are bent towards the incision to attach the flexible mounting structure to the vessel in a manner that controls the edge of the vessel adjacent to the incision. The mounting structures are oriented on each vessel so fasteners on one mounting structure interdigitate with fasteners on the other mounting structure at the location of contact between the vessels when the two vessels are brought together. This creates two complementary sinusoidal-shaped vessel edges with peaks of one edge being accommodated in the valleys of the other edge. The peak-to-valley orientation forms a sinusoidal-shaped joint which is leak free. The fasteners are spaced so proper pressure is applied to the tissue to promote healing without leaking. Furthermore, the fasteners are sized and shaped to properly engage the tissue and bend in a desired manner.
    Type: Application
    Filed: March 6, 2003
    Publication date: August 14, 2003
    Inventors: Paul A. Spence, Warren P. Williamson, George Christakis, Mark Ortiz, Craig B. Berky, Douglas P. Allen, Matthew J. Huddleston, Delbert Ted Leimbach, Cecil R. Robinson, E. Dale VanHoose, Thomas J. Ward, Marty J. Warnecke
  • Patent number: 6565581
    Abstract: An anastomosis is performed using a flexible mounting structure mounted on the outside of at least one vessel. Fasteners extend through the vessel and are bent towards the incision to attach the flexible mounting structure to the vessel in a manner that controls the edge of the vessel adjacent to the incision. The mounting structures are oriented on each vessel so fasteners on one mounting structure interdigitate with fasteners on the other mounting structure at the location of contact between the vessels when the two vessels are brought together. This creates two complementary sinusoidal-shaped vessel edges with peaks of one edge being accommodated in the valleys of the other edge. The peak-to-valley orientation forms a sinusoidal-shaped joint which is leak free. The fasteners are spaced so proper pressure is applied to the tissue to promote healing without leaking. Furthermore, the fasteners are sized and shaped to properly engage the tissue and bend in a desired manner.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: May 20, 2003
    Assignee: Origin Medsystems, Inc.
    Inventors: Paul A. Spence, Warren P. Williamson IV, George Christakis, Mark Ortiz, Craig B. Berky, Douglas P. Allen, Matthew J. Huddleston, Delbert Ted Leimbach, Cecil R. Robinson, E. Dale VanHoose, Thomas J. Ward, Marty J. Warnecke
  • Publication number: 20020068949
    Abstract: Wire fasteners having legs with lengths that can be one hundred times the width of the fastener are used to secure items, such as prosthesis valves to a patient during minimally invasive surgery. The fasteners are manipulated into position and then are immobilized by means of the legs thereof for tensioning, cutting and forming in situ. The fasteners are manipulated, tensioned and formed from the leg end of the fasteners. Tools for initially placing the fasteners and for immobilizing, tensioning, cutting and bending the fastener legs are disclosed. Once the fasteners are initially placed, the prosthesis is placed on the long legs of the placed fasteners and is guided into position on the legs. Once the prosthesis is in position, the legs of the fasteners are immobilized, tensioned, cut and bent into staple-like shapes to secure the prosthesis to the patient. A method for carrying out the procedure using the long fastener is also disclosed.
    Type: Application
    Filed: January 17, 2002
    Publication date: June 6, 2002
    Inventors: Warren P. Williamson, Paul A. Spence, George A. Keller, Cecil R. Robinson, Thomas J. Ward
  • Patent number: 6162233
    Abstract: Wire fasteners having legs with lengths that can be one hundred times the width of the fastener are used to secure items, such as prosthesis valves to a patient during minimally invasive surgery. The fasteners are manipulated into position and then are immobilized by the legs thereof for tensioning, cutting and forming in situ. The fasteners are manipulated, tensioned and formed from the leg end of the fasteners. Tools for initially placing the fasteners and for immobilizing, tensioning, cutting and bending the fastener legs are disclosed. Once the fasteners are initially placed, the prosthesis is placed on the long legs of the placed fasteners and is guided into position on the legs. Once the prosthesis is in position, the legs of the fasteners are immobilized, tensioned, cut and bent into staple-like shapes to secure the prosthesis to the patient. A method for carrying out the procedure using the long fastener is also disclosed.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: December 19, 2000
    Assignee: CardioVascular Technologies, LLC
    Inventors: Warren P. Williamson, IV, Paul A. Spence, George A. Keller, Cecil R. Robinson, Thomas J. Ward
  • Patent number: 6042607
    Abstract: A heart valve can be replaced using minimally invasive methods which include a sutureless sewing cuff that and a fastener delivery tool that holds the cuff against the patient's tissue while delivering fasteners, two at a time to attach the cuff to the tissue from the inside out. The tool stores a plurality of fasteners. Drawstrings are operated from outside the patient's body and cinch the sewing cuff to the valve body. The cuff is releasably mounted on the tool and the tool holds the cuff against tissue and drives the fastener through the cuff and the tissue before folding over the legs of the fastener whereby secure securement between the cuff and the tissue is assured. At least two rows of staggered fasteners are formed whereby fasteners are located continuously throughout the entire circumference of the cuff. A minimally invasive surgical method is disclosed, and a method and tool are disclosed for repairing abdominal aortic aneurysms in a minimally invasive manner.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: March 28, 2000
    Assignee: CardioVascular Technologies LLC
    Inventors: Warren Williamson, IV, Paul A. Spence, George T. Christakis, Thomas J. Ward, Dominic P. DiNovo, George A. Keller, Cecil R. Robinson, E. Dale VanHoose
  • Patent number: 5972004
    Abstract: Wire fasteners having legs with lengths that can be one hundred times the width of the fastener are used to secure items, such as prosthesis valves to a patient during minimally invasive surgery. The fasteners are manipulated into position and then are immobilized by means of the legs thereof for tensioning, cutting and forming in situ. The fasteners are manipulated, tensioned and formed from the leg end of the fasteners. Tools for initially placing the fasteners and for immobilizing, tensioning, cutting and bending the fastener legs are disclosed. Once the fasteners are initially placed, the prosthesis is placed on the long legs of the placed fasteners and is guided into position on the legs. Once the prosthesis is in position, the legs of the fasteners are immobilized, tensioned, cut and bent into staple-like shapes to secure the prosthesis to the patient. A method for carrying out the procedure using the long fastener is also disclosed.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: October 26, 1999
    Assignee: CardioVascular Technologies, LLC.
    Inventors: Warren P. Williamson, IV, Paul A. Spence, George A. Keller, Cecil R. Robinson, Thomas J. Ward