Patents by Inventor Cecilia Mak

Cecilia Mak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060252278
    Abstract: A processing method for depositing porous silica and doped silica films is provided. The method uses a cyclic scheme wherein each cycle comprises first codepositing silica with silicon, then selectively removing the silicon from the codeposit to form a porous structure. In a preferred embodiment, the codeposition is carried out by plasma enhanced chemical vapor deposition. After codeposition, the codeposit is exposed to a selective silicon removal reagent that can preferentially remove the silicon in the codeposit, leaving behind a porous structure. Repeated execution of the codeposition and the selective silicon removal steps build up thickness of the porous film. A porous film with highly uniform small pores and a desired porosity profile can be obtained with this method. This method is advantageous for forming a broad range of low-k dielectrics for semiconductor integrated circuit fabrication. The general method is also advantageous for forming other porous films for other applications.
    Type: Application
    Filed: July 7, 2006
    Publication date: November 9, 2006
    Inventors: Cecilia Mak, Kam Law
  • Publication number: 20060040507
    Abstract: A processing method for depositing porous silica and doped silica films is provided. The method uses a cyclic scheme wherein each cycle comprises first codepositing silica with silicon, then selectively removing the silicon to form a porous structure. In a preferred embodiment, the codeposition is carried out by plasma enhanced chemical vapor deposition. The reagent feed stream comprises a mixture of codeposition reagents and a selective silicon removal reagent. RF power modulation is used to control the codeposition and the selective silicon removal steps with the later proceeds whenever the RF power is turned off or reduced to a low level. A porous film with highly uniform small pores and a desired porosity profile can be obtained with this method. This method is advantageous for forming a broad range of low-k dielectrics for semiconductor integrated circuit fabrication. The method is also advantageous for forming other porous films for other applications.
    Type: Application
    Filed: August 17, 2004
    Publication date: February 23, 2006
    Inventors: Cecilia Mak, Kam Law
  • Publication number: 20050220984
    Abstract: Methods and systems are provided for processing a film over a substrate in a process chamber using plasma deposition. A plasma is formed in the process chamber and a process gas mixture suitable for processing the film is flowed into the process chamber under a set of process conditions. The process gas mixture may include a silicon-containing gas and an oxygen-containing gas to deposit a silicate glass, which may in some instances also be doped to obtain specifically desired optical properties. A parameter is monitored during processing of the film so that the process conditions may be changed in accordance with a correlation among a value of the parameter, an optical property of the film, and the process conditions.
    Type: Application
    Filed: April 2, 2004
    Publication date: October 6, 2005
    Applicant: APPLIED MATERIALS INC., A Delaware corporation
    Inventors: Sheng Sun, Cecilia Mak, Kam Law
  • Publication number: 20050115921
    Abstract: In one aspect, the invention provides methods and apparatus for forming optical devices on large area substrates. The large area substrates are preferably made of quartz, silica or fused silica. The large area substrates enable larger optical devices to be formed on a single die. In another aspect, the invention provides methods and apparatus for forming integrated optical devices on large area substrates, such as quartz, silica or fused silica substrates. In another aspect, the invention provides methods and apparatus for forming optical devices using damascene techniques on large area substrates or silicon substrates. In another aspect, methods for forming optical devices by bonding an upper cladding layer on a lower cladding and a core is provided.
    Type: Application
    Filed: December 11, 2000
    Publication date: June 2, 2005
    Inventors: Cecilia Mak, John White, Kam Law, Dan Maydan
  • Publication number: 20050048789
    Abstract: A method of etching a dielectric layer formed on a substrate including a sequence of processing cycles, wherein each cycle comprises steps of depositing an inactive polymeric film, activating the film to etch the structure, and removing the film is disclosed. In one embodiment, the method uses a fluorocarbon gas to form the polymeric film and a substrate bias to activate such film.
    Type: Application
    Filed: September 3, 2003
    Publication date: March 3, 2005
    Inventors: Walter Merry, Cecilia Mak, Kam Law