Patents by Inventor Cesar Ovalles

Cesar Ovalles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9671384
    Abstract: Disclosed herein is a method involving the steps of method for determining asphaltene stability in a hydrocarbon-containing sample having solvated asphaltenes therein, the method comprising the steps of: (a) precipitating an amount of asphaltenes from a liquid sample of the hydrocarbon-containing sample having solvated asphaltenes therein with one or more first solvents and capturing the precipitated asphaltenes in one or more low volume filters comprising a porous filter element comprising an area through which a fluid may flow; (b) determining one or more solubility characteristics of the precipitated asphaltenes; and (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: June 6, 2017
    Assignee: Chevron U.S.A. Inc.
    Inventors: Estrella Rogel, Cesar Ovalles, Michael Moir
  • Patent number: 9539455
    Abstract: The present invention is directed to a method for irradiating of solids containing petroleum or petroleum derived compounds (PPDCs), such as soils, oily sludge, drill cuttings, sediments, and non-commercial petroleum industry products, with electron beams in order to physically and/or chemically alter the composition of the PPDCs. The method includes the step of separating PPDC gas and liquids in the presence of a gas driver. Optionally, the method includes the steps of treating off-gases and applying one or more amendments to PPCD-impacted solid material pre-irradiation, post-irradiation, or during electron beam irradiation.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: January 10, 2017
    Assignee: CHEVRON U.S.A. INC
    Inventors: Thomas Hoelen, Cesar Ovalles, Deyuan Kong
  • Publication number: 20160376883
    Abstract: Systems and methods are provided for maintaining the performance and operational stability of an RF (radio frequency) antenna that is positioned in a hydrocarbon-bearing formation, for heating the formation using electromagnetic energy in the radio frequency range. Contaminants such as water or brine, metallic particulates and ionic or organic materials frequently occur in a wellbore being prepared for RF heating, or in an RF antenna installed in the wellbore. Prior to applying RF electrical energy to the formation, the antenna is decontaminated by circulating a preconditioning fluid through the antenna and recovering a spent fluid for treating and recycle. Decontamination is continued while the spent fluid from the antenna includes, but not limited to, water, metallic particles, ionic species, organic compounds contaminants, etc. An operational power level of radio frequency electrical energy is then applied to the decontaminated antenna for providing thermal energy to the hydrocarbon-bearing formation.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 29, 2016
    Inventors: Gunther H. Dieckmann, Cesar Ovalles
  • Publication number: 20160169858
    Abstract: Disclosed herein is a method involving the steps of method for determining asphaltene stability in a hydrocarbon-containing sample having solvated asphaltenes therein, the method comprising the steps of: (a) precipitating an amount of asphaltenes from a liquid sample of the hydrocarbon-containing sample having solvated asphaltenes therein with one or more first solvents and capturing the precipitated asphaltenes in one or more low volume filters comprising a porous filter element comprising an area through which a fluid may flow; (b) determining one or more solubility characteristics of the precipitated asphaltenes; and (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Applicant: Chevron U.S.A. Inc.
    Inventors: Estrella Rogel, Cesar Ovalles, Michael Moir
  • Patent number: 9284826
    Abstract: Provided herein are embodiments for extracting oil from an oil-bearing formation. An embodiment of a method includes heating a first portion of the formation with radio frequency energy generated by a radio frequency generator electrically coupled to an antenna. The antenna is positioned within a wellbore and located within the first portion to heat the first portion to a minimum temperature of about 160° F. The radio frequency generator delivers power in a range from about 50 kilowatts to about 2 Megawatts, and a power per unit length of antenna is in a range from about 0.5 kW/m to 5 kW/m. The method includes extracting the oil from the first portion after heating to create void space for steam injection. The method also includes injecting steam into the first portion to heat a second portion of the formation adjacent to the first portion and extracting the oil from the second portion.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 15, 2016
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Michael John Campbell, Kathleen Judith Miller, Gunther Hans Dieckmann, James Thomas Dunlavey, Cesar Ovalles, Donald Leroy Kuehne
  • Patent number: 9255043
    Abstract: Disclosed is a liquid crude hydrocarbon composition containing (a) a liquid crude hydrocarbon having an API gravity of less than or equal to about 20; and (b) a minor amount of a blend comprising (i) one or more hydrocarbon-containing solvents having an aromatic content of at least about 10 wt. %; and (ii) one or more asphaltene modifiers selected from the group consisting of an aromatic sulfonic acid or salt thereof, an aliphatic sulfonic acid or salt thereof and an alkyl-substituted hydroxyaromatic carboxylic acid or salt thereof. Also disclosed is a method for transporting a liquid crude hydrocarbon having an API gravity of less than or equal to about 20.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: February 9, 2016
    Assignee: Chevron Oronite Company LLC
    Inventors: Cesar Ovalles, John Segerstrom, Estrella Rogel, Curt Campbell
  • Publication number: 20150360065
    Abstract: The present invention is directed to a method for irradiating of solids containing petroleum or Petroleum derived compounds (PPDCs), such as soils, oily sludge, drill cuttings, sediments, and non-commercial petroleum industry products, with electron beams in order to physically and/or chemically alter the composition of the PPDCs. The method includes the step of separating PPDC gas and liquids in the presence of a gas driver. Optionally, the method includes the steps of treating off-gases and applying one or more amendments to PPCD-impacted solid material pre-irradiation, post-irradiation, or during electron beam irradiation.
    Type: Application
    Filed: June 11, 2015
    Publication date: December 17, 2015
    Applicant: Chevron U.S.A. Inc.
    Inventors: THOMAS HOELEN, CESAR OVALLES, DEYUAN KONG
  • Patent number: 9127213
    Abstract: Disclosed herein is a method involving the steps of: (a) precipitating an amount of polyaromatic compounds from a liquid sample of a first hydrocarbon-containing feedstock having solvated polyaromatic compounds therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated polyaromatic compounds; (c) analyzing the one or more solubility characteristics of the precipitated polyaromatic compounds; and (d) correlating a measurement of catalyst activity performance for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated polyaromatic compounds to predict catalyst performance of a catalyst in a refinery operation of the hydrocarbon-containing feedstock.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: September 8, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Varut Komalarajun, Cesar Ovalles, Estrella Rogel
  • Patent number: 9028680
    Abstract: A method and system for handling viscous liquid crude hydrocarbons is disclosed. The method involves (a) solvent deasphalting at least a portion of an asphaltene-containing liquid crude hydrocarbon feedstock to form an asphaltene fraction and a deasphalted oil (DAO) fraction essentially free of asphaltenes; (b) adjusting the density of the asphaltene fraction to substantially the same density of a carrier for the asphaltene fraction; (c) forming coated asphaltene particles from the asphaltene fraction of step (b); (d) slurrying the coated asphaltene particles with the carrier; and (e) transporting the slurry to a treatment facility or a transportation carrier.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: May 12, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Gunther Hans Dieckmann, John Segerstrom, Cesar Ovalles, Estrella Rogel, Vasudevan Sampath, Donald L. Kuehne, Hariprasad Janakiram Subramani, Dennis John O'Rear
  • Publication number: 20150114635
    Abstract: Disclosed is a process for in situ upgrading of a heavy hydrocarbon comprising the steps of: (a) positioning a well in a reservoir containing a heavy hydrocarbon having an initial API gravity of less than or equal to about 20, an n-heptane asphaltene content as measured by the ASTM D-6560 of at least about 1 wt. %, and a viscosity at 35° C. greater than about 350 centistokes (cSt); (b) injecting one or more hydrocarbon solvents and one or more asphaltene precipitant additives into the well in any order at a ratio by volume of the solvent to the heavy hydrocarbon of at least from about 0.1:1 to about 20:1 under reservoir conditions so as to provide an upgraded hydrocarbon in the reservoir, wherein the upgraded hydrocarbon has an improved API gravity greater than the initial API gravity, a reduction in the asphaltene content, and a lower viscosity; and (c) producing the upgraded hydrocarbon from the well.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Applicant: Chevron U.S.A. Inc.
    Inventors: Cesar Ovalles, Estrella Rogel
  • Publication number: 20140262225
    Abstract: Oil extraction from an oil-bearing formation includes: heating a first portion of the formation containing oil with radio frequency energy; extracting the oil from the first portion of the formation; injecting steam into the first portion of the formation to heat a second portion of the formation containing oil adjacent the first portion; and extracting the oil from the second portion of the formation.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Michael John Campbell, Kathleen Judith Miller, Gunther Hans Dieckmann, James Thomas Dunlavey, Cesar Ovalles, Donald Leroy Kuehne
  • Publication number: 20140130581
    Abstract: Disclosed herein is a method for determining the effectiveness of one or more asphaltene dispersant additives for inhibiting or preventing asphaltene precipitation in a hydrocarbon-containing material subjected to elevated temperature and pressure conditions.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Applicant: Chevron U.S.A.
    Inventors: Cesar Ovalles, Estrella Rodgel
  • Publication number: 20130124106
    Abstract: Disclosed herein is a method of estimating sediment content of a hydroprocessed hydrocarbon-containing feedstock.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 16, 2013
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Estrella Rogel, Cesar Ovalles, Pak Leung, Nan Chen
  • Publication number: 20130118951
    Abstract: Disclosed herein is a method involving the steps of: (a) precipitating an amount of polyaromatic compounds from a liquid sample of a first hydrocarbon-containing feedstock having solvated polyaromatic compounds therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated polyaromatic compounds; (c) analyzing the one or more solubility characteristics of the precipitated polyaromatic compounds; and (d) correlating a measurement of catalyst activity performance for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated polyaromatic compounds to predict catalyst performance of a catalyst in a refinery operation of the hydrocarbon-containing feedstock.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 16, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventors: Varut Komalarajun, Cesar Ovalles, Estrella Rogel
  • Publication number: 20130124105
    Abstract: Disclosed herein is a method of predicting sediment content of a hydroprocessed hydrocarbon product. The method involves: (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics; (d) determining asphaltene content of the liquid sample from the results of analyzing the one or more solubility characteristics; (e) determining one or more asphaltene stability parameters of the liquid sample from the results of analyzing the one or more solubility characteristics; and (f) correlating the asphaltene content and one of the asphaltene stability parameters of the liquid sample with at least two operation conditions associated with a refinery to predict sediment content.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 16, 2013
    Applicant: Chevron U.S.A. INC
    Inventors: Estrella Rogel, Cesar Ovalles, Pak Leung, Nan Chen
  • Publication number: 20130048079
    Abstract: Disclosed is a liquid crude hydrocarbon composition containing (a) a liquid crude hydrocarbon having an API gravity of less than or equal to about 20; and (b) a minor amount of a blend comprising (i) one or more hydrocarbon-containing solvents having an aromatic content of at least about 10 wt. %; and (ii) one or more asphaltene modifiers selected from the group consisting of an aromatic sulfonic acid or salt thereof, an aliphatic sulfonic acid or salt thereof and an alkyl-substituted hydroxyaromatic carboxylic acid or salt thereof. Also disclosed is a method for transporting a liquid crude hydrocarbon having an API gravity of less than or equal to about 20.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Inventors: Cesar Ovalles, John Segerstrom, Estrella Rogel, Curtis B. Campbell
  • Publication number: 20120160015
    Abstract: Disclosed is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock fouling tendencies for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.
    Type: Application
    Filed: March 11, 2011
    Publication date: June 28, 2012
    Applicant: Chevron U.S.A. Inc.
    Inventors: Cesar Ovalles, Estrella Rogel, Michael E. Moir
  • Publication number: 20120090220
    Abstract: A method and system for handling viscous liquid crude hydrocarbons is disclosed. The method involves (a) solvent deasphalting at least a portion of an asphaltene-containing liquid crude hydrocarbon feedstock to form an asphaltene fraction and a deasphalted oil (DAO) fraction essentially free of asphaltenes; (b) adjusting the density of the asphaltene fraction to substantially the same density of a carrier for the asphaltene fraction; (c) forming coated asphaltene particles from the asphaltene fraction of step (b); (d) slurrying the coated asphaltene particles with the carrier; and (e) transporting the slurry to a treatment facility or a transportation carrier.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 19, 2012
    Applicant: CHEVRON U. S. A. INC.
    Inventors: Gunther Hans Dieckmann, John Segerstrom, Cesar Ovalles, Estrella Rogel, Vasudevan Sampath, Donald L. Kuehne, Hariprasad Janakiram Subramani, Dennis John O'Rear
  • Publication number: 20110077311
    Abstract: A method for handling viscous liquid crude hydrocarbons is disclosed. The method involves (a) obtaining an emulsion comprising an aqueous fraction and a liquid crude hydrocarbon fraction, wherein the liquid crude hydrocarbon fraction has a first viscosity and contains an oil-soluble compound that reversibly converts to a surfactant under basic conditions, and further wherein the emulsion has a second viscosity that is less than the first viscosity of the liquid crude hydrocarbon fraction; and (b) breaking the emulsion by contacting the emulsion with a carbon dioxide-containing material to convert at least a portion of the surfactant to the oil-soluble compound.
    Type: Application
    Filed: September 25, 2009
    Publication date: March 31, 2011
    Inventors: Estrella Rogel, Cesar Ovalles
  • Publication number: 20110062058
    Abstract: A method for determining asphaltene stability in a hydrocarbon-containing material having solvated asphaltenes therein is disclosed. The method involves the steps of: (a) precipitating an amount of the asphaltenes from a liquid sample of the hydrocarbon-containing material with an alkane mobile phase solvent in a column; (b) dissolving a first amount and a second amount of the precipitated asphaltenes by gradually and continuously changing the alkane mobile phase solvent to a final mobile phase solvent having a solubility parameter at least 1 MPa0.5 higher than the alkane mobile phase solvent; (c) monitoring the concentration of eluted fractions from the column; (d) creating a solubility profile of the dissolved asphaltenes in the hydrocarbon-containing material; and (e) determining one or more asphaltene stability parameters of the hydrocarbon-containing material.
    Type: Application
    Filed: July 9, 2010
    Publication date: March 17, 2011
    Inventors: Estrella Rogel, Cesar Ovalles, Michael Moir