Patents by Inventor Cha-young Yoo

Cha-young Yoo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070145485
    Abstract: Integrated circuit devices, for example, dynamic random access memory (DRAM) devices, are provided including an integrated circuit substrate having a cell array region and a peripheral circuit region. A buried contact plug is provided on the integrated circuit substrate in the cell array region and a resistor is provided on the integrated circuit substrate in the peripheral circuit region. A first pad contact plug is provided on the buried contact plug in the cell array region and a second pad contact plug is provided on the resistor in the peripheral circuit region. An ohmic layer is provided between the first pad contact plug and the buried contact plug and between the second pad contact plug and the resistor. Related methods of fabricating integrated circuit devices are also provided.
    Type: Application
    Filed: March 2, 2007
    Publication date: June 28, 2007
    Inventors: Se-Hoon Oh, Jung-Hee Chung, Jae-Hyoung Choi, Jeong-Sik Choi, Sung-Tae Kim, Cha-Young Yoo
  • Publication number: 20070099419
    Abstract: Methods for fabricating semiconductor memory devices may include forming a first conductive layer for a first electrode on a semiconductor substrate, forming a dielectric layer on the first conductive layer, and forming a second conductive layer for a second electrode on the dielectric layer. Portions of the second conductive layer and the dielectric layer can be removed, and a thermal process can be performed on the second conductive layer and the dielectric layer. The thermal process can reduce interface stress between the second conductive layer and the dielectric layer and/or cure the dielectric layer. In addition, the dielectric layer may be maintained in an amorphous state during and after the thermal process.
    Type: Application
    Filed: December 19, 2006
    Publication date: May 3, 2007
    Inventors: Jae-hyoung Choi, Wan-don Kim, Cha-young Yoo, Suk-jin Chung
  • Patent number: 7205219
    Abstract: Integrated circuit devices, for example, dynamic random access memory (DRAM) devices, are provided including an integrated circuit substrate having a cell array region and a peripheral circuit region. A buried contact plug is provided on the integrated circuit substrate in the cell array region and a resistor is provided on the integrated circuit substrate in the peripheral circuit region. A first pad contact plug is provided on the buried contact plug in the cell array region and a second pad contact plug is provided on the resistor in the peripheral circuit region. An ohmic layer is provided between the first pad contact plug and the buried contact plug and between the second pad contact plug and the resistor. Related methods of fabricating integrated circuit devices are also provided.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: April 17, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Hoon Oh, Jung-Hee Chung, Jae-Hyoung Choi, Jeong-Sik Choi, Sung-Tae Kim, Cha-Young Yoo
  • Patent number: 7179739
    Abstract: Embodiments of the present invention include methods of forming a contact to a capacitor in a semiconductor device. A metal silicide layer is formed at a top surface of a conductive plug of the semiconductor device that is coupled to a bottom electrode of the capacitor to provide an ohmic contact therebetween. Forming a metal silicide layer may include exposing a surface of the conductive plug, depositing a metal layer of the bottom electrode on the exposed surface of the conductive plug and thermally processing the semiconductor device to react a part of the deposited metal layer and the conductive plug to form the metal silicide layer. Methods of forming a semiconductor device including a capacitor having a metal silicide layer connecting a bottom electrode of the capacitor and a conductive plug are also provided.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: February 20, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Sik Choi, Jung-Hee Chung, Woo-Gwan Shim, Young-Sun Kim, Jae-Hyoung Choi, Se-Hoon Oh, Cha-Young Yoo
  • Patent number: 7172946
    Abstract: Methods for fabricating semiconductor memory devices may include forming a first conductive layer for a first electrode on a semiconductor substrate, forming a dielectric layer on the first conductive layer, and forming a second conductive layer for a second electrode on the dielectric layer. Portions of the second conductive layer and the dielectric layer can be removed, and a thermal process can be performed on the second conductive layer and the dielectric layer. The thermal process can reduce interface stress between the second conductive layer and the dielectric layer and/or cure the dielectric layer. In addition, the dielectric layer may be maintained in an amorphous state during and after the thermal process.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: February 6, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-hyoung Choi, Wan-don Kim, Cha-young Yoo, Suk-jin Chung
  • Publication number: 20070026625
    Abstract: In one embodiment, a method of fabricating a MIM capacitor includes forming an interlayer insulating layer having a contact plug on a semiconductor substrate, forming an etch stop layer on the interlayer insulating layer, and forming a mold layer having an opening exposing the contact plug on the etch stop layer. Next, a first conductive layer for the lower electrode is formed on the sidewalls and the bottom of the opening, and a photoresistive layer is formed on the first conductive layer. The mold layer and the photoresistive layer are then removed, and a composite dielectric layer is formed on the lower electrode. A second conductive layer is then formed on the composite dielectric layer. The composite dielectric layer may be composed of an oxide hafnium (HfO2) dielectric layer and an oxide aluminum (Al2O3) dielectric layer, with the oxide hafnium dielectric layer having a thickness of about 20 ? to about 50 ?.
    Type: Application
    Filed: July 28, 2006
    Publication date: February 1, 2007
    Inventors: Jung-Hee CHUNG, Jong-Cheol LEE, Jae-Hyoung CHOI, Jeong-Sik CHOI, Se-Hoon OH, Cha-Young YOO
  • Publication number: 20060244147
    Abstract: In a method of manufacturing a dielectric structure, after a tunnel oxide layer pattern is formed on a substrate, a floating gate is formed on the tunnel oxide layer. After a first dielectric layer pattern including a metal silicon oxide and a second dielectric layer pattern including a metal silicon oxynitride are formed, a control gate is formed on the dielectric structure. Since the dielectric structure includes at least one metal silicon oxide layer and at least one metal silicon oxynitride layer, the dielectric structure may have a high dielectric constant and a good thermal resistance. A non-volatile semiconductor memory device including the dielectric structure may have good electrical characteristics such as a large capacitance and a low leakage current.
    Type: Application
    Filed: January 25, 2006
    Publication date: November 2, 2006
    Inventors: Jong-Cheol Lee, Sung-Tae Kim, Young-Sun Kim, Cha-Young Yoo, Gab-Jin Nam, Young-Geun Park, Jae-Hyoung Choi, Jae-Hyun Yeo, Ha-Jin Lim, Yun-Seok Kim
  • Publication number: 20060205198
    Abstract: In a method of forming a thin film and methods of manufacturing a gate structure and a capacitor, a hafnium precursor including one alkoxy group and three amino groups, and an oxidizing agent are provided on a substrate. The hafnium precursor is reacted with the oxidizing agent to form the thin film including hafnium oxide on the substrate. The hafnium precursor may be employed for forming a gate insulation layer of a transistor or a dielectric layer of a capacitor.
    Type: Application
    Filed: March 10, 2006
    Publication date: September 14, 2006
    Inventors: Young-Geun Park, Jae-Hyun Yeo, Eun-Ae Chung, Ki-Vin Im, Young-Sun Kim, Sung-Tae Kim, Cha-Young Yoo
  • Publication number: 20060186452
    Abstract: Provided is a capacitor of a semiconductor device and a method of fabricating the same. In one embodiment, the capacitor includes a lower electrode formed on a semiconductor substrate; a dielectric layer formed on the lower electrode; and an upper electrode that is formed on the dielectric layer. The upper electrode includes a first conductive layer, a second conductive layer, and a third conductive layer stacked sequentially. The first conductive layer comprises a metal layer, a conductive metal oxide layer, a conductive metal nitride layer, or a conductive metal oxynitride layer. The second conductive layer comprises a doped polysilicon germanium layer. The third conductive layer comprises a material having a lower resistance than that of the second conductive layer.
    Type: Application
    Filed: December 21, 2005
    Publication date: August 24, 2006
    Inventors: Gab-Jin Nam, Young-Sun Kim, Cha-Young Yoo, Jong-Cheol Lee, Jin-Tae Noh, Jae-Young Ahn, Young-Geun Park, Jae-Hyoung Choi, Jae-Hyun Yeo
  • Patent number: 7091102
    Abstract: An integrated circuit device is formed by providing a substrate and forming a capacitor on the substrate. The capacitor includes a lower electrode disposed on the substrate, a dielectric layer on the lower electrode, and an upper electrode on the dielectric. A hydrogen barrier insulation layer is formed on the upper electrode and a hydrogen barrier spacer is formed on a sidewall of the capacitor.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: August 15, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-jin Lim, Kwang-hee Lee, Suk-jin Chung, Cha-young Yoo, Wan-don Kim, Jin-il Lee
  • Publication number: 20060166476
    Abstract: In a method of manufacturing a dielectric structure, after a first dielectric layer is formed on a substrate by using a metal oxide doped with silicon, the substrate is placed on a susceptor of a chamber. By treating the first dielectric layer with a plasma in controlling a voltage difference between the susceptor and a ground, a second dielectric layer is formed on the first dielectric layer. The second dielectric layer including a metal oxynitride doped with silicon having enough content of nitrogen is formed on the first dielectric layer. Therefore, dielectric properties of the dielectric structure comprising the first and the second dielectric layers can be improved and a leakage current can be greatly decreased. By adapting the dielectric structure to a gate insulation layer and/or to a dielectric layer of a capacitor or of a non-volatile semiconductor memory device, capacitances and electrical properties can be improved.
    Type: Application
    Filed: January 25, 2006
    Publication date: July 27, 2006
    Inventors: Jong-Cheol Lee, Sung-Tae Kim, Young-Sun Kim, Cha-Young Yoo, Gab-Jin Nam, Young-Geun Park, Jae-Hyoung Choi, Jae-Hyun Yeo, Ha-Jin Lim, Yun-Seok Kim
  • Publication number: 20060148193
    Abstract: Provided are 1) a method for forming a ruthenium film under a single process condition, whereby high adhesion of the ruthenium film to a lower layer is maintained, and 2) a method for manufacturing an metal-insulator-metal (MIM) capacitor using the ruthenium film forming method. The method for forming a ruthenium film includes supplying bis(isoheptane-2,4-dionato)norbornadiene ruthenium at a flow rate of 0.2-1 ccm and oxygen at a flow rate of 20-60 sccm, and depositing the ruthenium film at a temperature of 330-430° C. under a pressure of 0.5-5 Torr using chemical vapor deposition (CVD).
    Type: Application
    Filed: March 13, 2006
    Publication date: July 6, 2006
    Inventors: Kwang-hee Lee, Cha-young Yoo, Han-Jin Lim, Sung-tae Kim, Suk-jin Chung, Wan-don Kim, Jung-hee Chung, Jin-il Lee
  • Publication number: 20060138511
    Abstract: Capacitors include an integrated circuit (semiconductor) substrate and an interlayer dielectric disposed on the integrated circuit substrate and including a metal plug therein. A lower electrode is disposed on the interlayer dielectric and contacting the metal plug. The lower electrode includes a cavity therein and a buried layer in the cavity. The buried layer is an oxygen absorbing material. A dielectric layer disposed on the lower electrode and an upper electrode is disposed on the dielectric layer. The lower electrode may be a noble metal layer. The buried layer may fill in the cavity and may not contain oxygen (O2) when initially formed.
    Type: Application
    Filed: February 23, 2006
    Publication date: June 29, 2006
    Inventors: Suk-jin Chung, Wan-don Kim, Cha-young Yoo, Kwang-hee Lee, Han-jin Lim, Jin-il Lee
  • Publication number: 20060141695
    Abstract: Methods of forming a zirconium hafnium oxide thin layer on a semiconductor substrate by supplying tetrakis(ethylmethylamino)zirconium ([Zr{N(C2H5)(CH3)}4], TEMAZ) and tetrakis(ethylmethylamino)hafnium ([Hf{N(C2H5)(CH3)}4], TEMAH) to a substrate are provided. The TEMAZ and the TEMAH may be reacted with an oxidizing agent. The thin layer including zirconium hafnium oxide may be used for a gate insulation layer in a gate structure, a dielectric layer in a capacitor, or a dielectric layer in a flash memory device.
    Type: Application
    Filed: November 22, 2005
    Publication date: June 29, 2006
    Inventors: Dae-Sik Choi, Kyoung-Ryul Yoon, Han-Mei Choi, Ki-Yeon Park, Seung-Hwan Lee, Sung-Tae Kim, Young-Sun Kim, Cha-Young Yoo
  • Publication number: 20060113578
    Abstract: A metal-insulator-metal (MIM) capacitor includes a lower electrode, a dielectric layer, and an upper electrode. The lower electrode includes a first conductive layer, a chemical barrier layer on the first conductive layer, and a second conductive layer on the chemical barrier layer. The chemical barrier layer is between the first and second conductive layers and is a different material than the first and second conductive layers. The dielectric layer is on the lower electrode. The upper electrode is on the dielectric layer opposite to the lower electrode. The first and second conductive layers can have the same thickness. The chemical barrier layer can be thinner than each of the first and second conductive layers. Related methods are discussed.
    Type: Application
    Filed: September 1, 2005
    Publication date: June 1, 2006
    Inventors: Eun-ae Chung, Jae-hyoung Choi, Jung-hee Chung, Young-sun Kim, Cha-young Yoo
  • Patent number: 7049232
    Abstract: Provided are 1) a method for forming a ruthenium film under a single process condition, whereby high adhesion of the ruthenium film to a lower layer is maintained, and 2) a method for manufacturing an metal-insulator-metal (MIM) capacitor using the ruthenium film forming method. The method for forming a ruthenium film includes supplying bis(isoheptane-2,4-dionato)norbornadiene ruthenium at a flow rate of 0.2–1 ccm and oxygen at a flow rate of 20–60 sccm, and depositing the ruthenium film at a temperature of 330–430° C. under a pressure of 0.5–5 Torr using chemical vapor deposition (CVD).
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: May 23, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-hee Lee, Cha-young Yoo, Han-jin Lim, Sung-tae Kim, Suk-jin Chung, Wan-don Kim, Jung-hee Chung, Jin-il Lee
  • Patent number: 7049648
    Abstract: The semiconductor memory device includes an interlevel dielectric pattern and an adhesive pattern, wherein both the interlevel dielectric and adhesive patterns include a contact hole to expose a semiconductor substrate. The adhesive pattern sufficiently adheres a lower electrode of a capacitor to the interlevel dielectric pattern, and thus prevents damage to the interlevel dielectric pattern during the formation of the capacitor. A conductive plug is disposed within the contact hole and may project higher than the top surface of the adhesive pattern. A leakage current preventive pattern is formed on top of the adhesive pattern and prevents a capacitor dielectric layer from directly contacting the plug to prevent occurrences of leakage current. A lower electrode of a capacitor electrically connected to the plug is formed on the plug.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: May 23, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Jun Won, Cha-Young Yoo
  • Patent number: 7042042
    Abstract: Integrated circuit capacitors are provided having an electrically insulating electrode support layer having an opening therein on an integrated circuit substrate. A U-shaped lower electrode is provided in the opening and a first capacitor dielectric layer extends on an inner surface and an outer portion of the U-shaped lower electrode. A second capacitor dielectric layer extends between the outer portion of the U-shaped lower electrode and the first capacitor dielectric and also extends between the outer portion of the U-shaped lower electrode and an inner sidewall of the opening. An upper electrode extends on the first dielectric layer.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: May 9, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-jun Won, Cha-young Yoo
  • Publication number: 20060094191
    Abstract: A method of manufacturing a semiconductor device can include forming a tunnel oxide layer on a substrate, forming a floating gate on the tunnel oxide layer and forming a dielectric layer pattern on the floating gate using an ALD process. The dielectric layer pattern can include a metal precursor that includes zirconium and an oxidant. A control gate can be formed on the dielectric layer pattern. The semiconductor device can include the dielectric layer pattern provided herein.
    Type: Application
    Filed: October 28, 2005
    Publication date: May 4, 2006
    Inventors: Han-Mei Choi, Kyoung-Ryul Yoon, Seung-Hwan Lee, Ki-Yeon Park, Sung-Tae Kim, Young-Sun Kim, Cha-Young Yoo
  • Patent number: 7034350
    Abstract: Capacitors include an integrated circuit (semiconductor) substrate and an interlayer dielectric disposed on the integrated circuit substrate and including a metal plug therein. A lower electrode is disposed on the interlayer dielectric and contacting the metal plug. The lower electrode includes a cavity therein and a buried layer in the cavity. The buried layer is an oxygen absorbing material. A dielectric layer disposed on the lower electrode and an upper electrode is disposed on the dielectric layer. The lower electrode may be a noble metal layer. The buried layer may fill in the cavity and may not contain oxygen (O2) when initially formed.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: April 25, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Suk-jin Chung, Wan-don Kim, Cha-young Yoo, Kwang-hee Lee, Han-jin Lim, Jin-il Lee