Patents by Inventor Chai Ean Gill

Chai Ean Gill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9177952
    Abstract: An electrostatic discharge (ESD) protection device includes a semiconductor substrate comprising a buried insulator layer and a semiconductor layer over the buried insulator layer having a first conductivity type, and first and second bipolar transistor devices disposed in the semiconductor layer, laterally spaced from one another, and sharing a common collector region having a second conductivity type. The first and second bipolar transistor devices are configured in an asymmetrical arrangement in which the second bipolar transistor device includes a buried doped layer having the second conductivity type and extending along the buried insulator layer from the common collector region across a device area of the second bipolar transistor device.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: November 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rouying Zhan, Chai Ean Gill, Changsoo Hong, Michael H. Kaneshiro
  • Patent number: 9129806
    Abstract: Protection device structures and related fabrication methods are provided. An exemplary semiconductor protection device includes a base well region having a first conductivity type, an emitter region within the base well region having a second conductivity type opposite the first conductivity type, a collector region having the second conductivity type, a first floating region having the second conductivity type within the base well region between the emitter region and the collector region, and a second floating region having the first conductivity type within the base well region between the first floating region and the collector region. The floating regions within the base well region are electrically connected to reduce current gain and improve holding voltage.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: September 8, 2015
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Rouying Zhan, Chai Ean Gill, Wen-Yi Chen, Michael H. Kaneshiro
  • Publication number: 20150236009
    Abstract: An area-efficient, low voltage ESD protection device (200) is provided for protecting low voltage pins (229, 230) against ESD events by using one or more stacked low voltage NPN bipolar junction transistors, each formed in a p-type material with an N+ collector region (216) and P+ base region (218) formed on opposite sides of an N+ emitter region (217) with separate halo extension regions (220-222) formed around at least the collector and emitter regions to improve the second trigger or breakdown current (It2) and set the snapback voltage (Vsb) and triggering voltage (Vt1) at the desired level.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 20, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Chai Ean Gill, Changsoo Hong
  • Patent number: 9112351
    Abstract: An integrated circuit is provided. The integrated circuit may include, but is not limited to, a first node, a second node configured to be coupled to ground, an output driver, and a electrostatic discharge circuit electrically coupled to the first node, the second node, and the output driver. The electrostatic discharge circuit may include, but is not limited a high-pass filter configured to detect an electrostatic discharge event at the first node, a driving stage circuit electrically coupled to the high-pass filter and the output driver, the driving stage circuit configured to receive a signal from the high-pass filter when the high-pass filter detects the electrostatic discharge event and further configured to shunt an input of the output driver to the second node in response to the signal from the high-pass filter, and a step-down circuit electrically coupled to the driving stage circuit and configured to bias the driving stage circuit.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: August 18, 2015
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Wen-Yi Chen, Chai Ean Gill
  • Patent number: 9054155
    Abstract: Die structures for electronic device packages and related fabrication methods are provided. An exemplary die structure includes a substrate having a first layer of semiconductor material including a semiconductor device formed thereon, a handle layer of semiconductor material, and a buried layer of dielectric material between the handle layer and the first layer. The die structure also includes a plurality of shunting regions in the first layer of semiconductor material, wherein each shunting region includes a doped region in the first layer that is electrically connected to the handle layer of semiconductor material, and a body region underlying the doped region that is contiguous with at least a portion of the first layer underlying a semiconductor device.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: June 9, 2015
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Chai Ean Gill, Wen-Yi Chen
  • Patent number: 9018072
    Abstract: An electrostatic discharge (ESD) protection clamp (21, 21?, 70, 700) for protecting associated devices or circuits (24), comprises a bipolar transistors (21, 21?, 70, 700) in which doping of facing base (75) and collector (86) regions is arranged so that avalanche breakdown occurs preferentially within a portion (84, 85) of the base region (74, 75) of the device (70, 700) away from the overlying dielectric-semiconductor interface (791). Maximum variations (?Vt1)MAX of ESD triggering voltage Vt1 as a function of base-collector spacing dimensions D due, for example, to different azimuthal orientations of transistors (21, 21?, 70, 700) on a semiconductor die or wafer is much reduced. Triggering voltage consistency and manufacturing yield are improved.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: April 28, 2015
    Assignee: Freescale Semiconductor Inc.
    Inventors: Amaury Gendron, Chai Ean Gill, Changsoo Hong
  • Patent number: 9018071
    Abstract: Methods for forming an electrostatic discharge protection (ESD) clamps are provided. In one embodiment, the method includes forming at least one transistor having a first well region of a first conductivity type extending into a substrate. At least one transistor is formed having another well region of a second opposite conductivity type, which extends into the substrate to partially form a collector. The lateral edges of the transistor well regions are separated by a distance D, which at least partially determines a threshold voltage Vt1 of the ESD clamp. A base contact of the first conductivity type is formed in the first well region and separated from an emitter of the second conductivity type by a lateral distance Lbe. The first doping density and the lateral distance Lbe are selected to provide a parasitic base-emitter resistance Rbe in the range of 1<Rbe<800 Ohms.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: April 28, 2015
    Assignee: Freescale Semiconductor Inc.
    Inventors: Rouying Zhan, Amaury Gendron, Chai Ean Gill
  • Patent number: 9019667
    Abstract: Protection device structures and related fabrication methods are provided. An exemplary protection device includes a first bipolar junction transistor, a second bipolar junction transistor, a first zener diode, and a second zener diode. The collectors of the first bipolar junction transistors are electrically coupled. A cathode of the first zener diode is coupled to the collector of the first bipolar transistor and an anode of the first zener diode is coupled to the base of the first bipolar transistor. A cathode of the second zener diode is coupled to the collector of the second bipolar transistor and an anode of the second zener diode is coupled to the base of the second bipolar transistor. In exemplary embodiments, the base and emitter of the first bipolar transistor are coupled at a first interface and the base and emitter of the second bipolar transistor are coupled at a second interface.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: April 28, 2015
    Assignee: Freescale Semiconductor Inc.
    Inventors: Chai Ean Gill, Changsoo Hong, Rouying Zhan, William G. Cowden
  • Publication number: 20150102384
    Abstract: An electrostatic discharge (ESD) protection device includes a semiconductor substrate comprising a buried insulator layer and a semiconductor layer over the buried insulator layer having a first conductivity type, and first and second bipolar transistor devices disposed in the semiconductor layer, laterally spaced from one another, and sharing a common collector region having a second conductivity type. The first and second bipolar transistor devices are configured in an asymmetrical arrangement in which the second bipolar transistor device includes a buried doped layer having the second conductivity type and extending along the buried insulator layer from the common collector region across a device area of the second bipolar transistor device.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 16, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Rouying Zhan, Chai Ean Gill, Changsoo Hong, Michael H. Kaneshiro
  • Patent number: 8982516
    Abstract: An area-efficient, high voltage, single polarity ESD protection device (300) is provided which includes an p-type substrate (303); a first p-well (308-1) formed in the substrate and sized to contain n+ and p+ contact regions (310, 312) that are connected to a cathode terminal; a second, separate p-well (308-2) formed in the substrate and sized to contain only a p+ contact region (311) that is connected to an anode terminal; and an electrically floating n-type isolation structure (304, 306, 307-2) formed in the substrate to surround and separate the first and second semiconductor regions. When a positive voltage exceeding a triggering voltage level is applied to the cathode and anode terminals, the ESD protection device triggers an inherent thyristor into a snap-back mode to provide a low impedance path through the structure for discharging the ESD current.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 17, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Amaury Gendron, Chai Ean Gill, Vadim A. Kushner, Rouying Zhan
  • Publication number: 20150021739
    Abstract: Protection device structures and related fabrication methods are provided. An exemplary semiconductor protection device includes a base region of semiconductor material having a first conductivity type, an emitter region within the base region having the opposite conductivity type, and a collector region of semiconductor material having the second conductivity type, wherein at least a portion of the base region resides between the emitter region and the collector region. A depth of the collector region is greater than a depth of the emitter region and less than or equal to a depth of the base region such that a distance between a lateral boundary of the emitter region and a proximal lateral boundary of the collector region is greater than zero and the collector region does not overlap or otherwise underlie the emitter region.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Inventors: WEN-YI CHEN, CHAI EAN GILL
  • Patent number: 8921942
    Abstract: Methods are provided for producing stacked electrostatic discharge (ESD) clamps. In one embodiment, the method includes providing a semiconductor substrate in which first and second serially-coupled transistors are formed. The first transistor includes a first well region having a first lateral edge partially forming the first transistor's base. The second transistor including a second well region having a second lateral edge partially forming the second transistor's base. Third and fourth well regions are formed in the first and second transistors, respectively, and extend a different distance into the substrate than do the well regions of the first and second transistors. The third well region has a third lateral edge separated from the first lateral edge by a first spacing dimension D1. The fourth well region has a fourth lateral edge separated from the second lateral edge by a second spacing dimension D2, which is different than D1.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: December 30, 2014
    Assignee: Freescale Semiconductor Inc.
    Inventors: Rouying Zhan, Amaury Gendron, Chai Ean Gill
  • Publication number: 20140367830
    Abstract: An electrostatic discharge protection clamp includes a substrate and a first electrostatic discharge protection device over the substrate. The first electrostatic discharge protection device includes a buried layer over the substrate. The buried layer has a first region having a first doping concentration and a second region having a second doping concentration. The first doping concentration is greater than the second doping concentration. The first electrostatic discharge protection device includes a first transistor over the buried layer. The first transistor has an emitter coupled to a first cathode terminal of the electrostatic discharge protection clamp. The first electrostatic discharge protection device includes a second transistor over the buried layer. The second transistor has an emitter coupled to a first anode terminal of the electrostatic discharge protection clamp. A collector of the first transistor and a collector of the second transistor are over the first region of the buried layer.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 18, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Rouying Zhan, Chai Ean Gill
  • Publication number: 20140347771
    Abstract: Protection device structures and related fabrication methods are provided. An exemplary semiconductor protection device includes a first base region of semiconductor material having a first conductivity type, a second base region of semiconductor material having the first conductivity type and a dopant concentration that is less than the first base region, a third base region of semiconductor material having the first conductivity type and a dopant concentration that is greater than the second base region, an emitter region of semiconductor material having a second conductivity type opposite the first conductivity type within the first base region, and a collector region of semiconductor material having the second conductivity type. At least a portion of the second base region resides between the third base region and the first base region and at least a portion of the first base region resides between the emitter region and the collector region.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 27, 2014
    Inventors: Rouying ZHAN, Chai Ean GILL, Wen-Yi CHEN, Michael H. KANESHIRO
  • Publication number: 20140346560
    Abstract: Protection device structures and related fabrication methods are provided. An exemplary semiconductor protection device includes a base well region having a first conductivity type, an emitter region within the base well region having a second conductivity type opposite the first conductivity type, a collector region having the second conductivity type, a first floating region having the second conductivity type within the base well region between the emitter region and the collector region, and a second floating region having the first conductivity type within the base well region between the first floating region and the collector region. The floating regions within the base well region are electrically connected to reduce current gain and improve holding voltage.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 27, 2014
    Inventors: Rouying ZHAN, Chai Ean GILL, Wen-Yi CHEN, Michael H. KANESHIRO
  • Publication number: 20140252552
    Abstract: Die structures for electronic device packages and related fabrication methods are provided. An exemplary die structure includes a substrate having a first layer of semiconductor material including a semiconductor device formed thereon, a handle layer of semiconductor material, and a buried layer of dielectric material between the handle layer and the first layer. The die structure also includes a plurality of shunting regions in the first layer of semiconductor material, wherein each shunting region includes a doped region in the first layer that is electrically connected to the handle layer of semiconductor material, and a body region underlying the doped region that is contiguous with at least a portion of the first layer underlying a semiconductor device.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Inventors: Chai Ean Gill, Wen-Yi Chen
  • Publication number: 20140235026
    Abstract: Methods for forming an electrostatic discharge protection (ESD) clamps are provided. In one embodiment, the method includes forming at least one transistor having a first well region of a first conductivity type extending into a substrate. At least one transistor is formed having another well region of a second opposite conductivity type, which extends into the substrate to partially form a collector. The lateral edges of the transistor well regions are separated by a distance D, which at least partially determines a threshold voltage Vt1 of the ESD clamp. A base contact of the first conductivity type is formed in the first well region and separated from an emitter of the second conductivity type by a lateral distance Lbe. The first doping density and the lateral distance Lbe are selected to provide a parasitic base-emitter resistance Rbe in the range of 1<Rbe<800 Ohms.
    Type: Application
    Filed: January 30, 2014
    Publication date: August 21, 2014
    Inventors: ROUYING ZHAN, AMAURY GENDRON, CHAI EAN GILL
  • Publication number: 20140225156
    Abstract: An electrostatic discharge (ESD) protection device includes a semiconductor substrate, a base region in the semiconductor substrate and having a first conductivity type, an emitter region in the base region and having a second conductivity type, a collector region in the semiconductor substrate, spaced from the base region, and having the second conductivity type, a breakdown trigger region having the second conductivity type, disposed laterally between the base region and the collector region to define a junction across which breakdown occurs to trigger the ESD protection device to shunt ESD discharge current, and a gate structure supported by the semiconductor substrate over the breakdown trigger region and electrically tied to the base region and the emitter region. The lateral width of the breakdown trigger region is configured to establish a voltage level at which the breakdown occurs.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Rouying Zhan, Chai Ean Gill, William G. Cowden, Changsoo Hong
  • Publication number: 20140218829
    Abstract: An integrated circuit is provided. The integrated circuit may include, but is not limited to, a first node, a second node configured to be coupled to ground, an output driver, and a electrostatic discharge circuit electrically coupled to the first node, the second node, and the output driver. The electrostatic discharge circuit may include, but is not limited a high-pass filter configured to detect an electrostatic discharge event at the first node, a driving stage circuit electrically coupled to the high-pass filter and the output driver, the driving stage circuit configured to receive a signal from the high-pass filter when the high-pass filter detects the electrostatic discharge event and further configured to shunt an input of the output driver to the second node in response to the signal from the high-pass filter, and a step-down circuit electrically coupled to the driving stage circuit and configured to bias the driving stage circuit.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Inventors: Wen-Yi Chen, Chai Ean Gill
  • Publication number: 20140211346
    Abstract: An area-efficient, high voltage, single polarity ESD protection device (300) is provided which includes an p-type substrate (303); a first p-well (308-1) formed in the substrate and sized to contain n+ and p+ contact regions (310, 312) that are connected to a cathode terminal; a second, separate p-well (308-2) formed in the substrate and sized to contain only a p+ contact region (311) that is connected to an anode terminal; and an electrically floating n-type isolation structure (304, 306, 307-2) formed in the substrate to surround and separate the first and second semiconductor regions. When a positive voltage exceeding a triggering voltage level is applied to the cathode and anode terminals, the ESD protection device triggers an inherent thyristor into a snap-back mode to provide a low impedance path through the structure for discharging the ESD current.
    Type: Application
    Filed: January 25, 2013
    Publication date: July 31, 2014
    Inventors: Amaury Gendron, Chai Ean Gill, Vadim A. Kushner, Rouying Zhan