Patents by Inventor Chan Fernando

Chan Fernando has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10218338
    Abstract: Aperiodic clock generation with clock spur suppression is based on cascaded randomizers, such as for mixed signal devices. A clock generator circuit includes an input node to receive the input periodic clock signal having an input-clock frequency. A first randomizer circuit coupled to receive the input clock signal from the input node, to perform signal randomization to suppress spurious signal content associated with (a) the input clock signal, and (b) the first randomizer circuit, and to generate an intermediate clock signal. A second concatenated randomizer circuit is coupled to receive the intermediate clock signal, to perform signal randomization to suppress spurious signal content associated with (a) the intermediated clock signal, and (b) the second randomizer circuit, and to generate an aperiodic output clock signal having a pre-defined average output-clock frequency that is less than the input-clock frequency. Example randomizers are a delta-sigma divider and a pulse swallower (in any order).
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: February 26, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Nikolaus Klemmer, Chan Fernando, Jaimin Mehta, Srinadh Madhavapeddi, Hamid Safiri, Atul Kumar Jain
  • Patent number: 5408110
    Abstract: Quasi-phase matched (QPM) second-harmonic (SH) generation in the reflection geometry is described. The SH intensity can be strongly enhanced by spatially modulating the optical properties of the nonlinear medium. This type of quasi-phase matching is demonstrated using an Al.sub.0.8 Ga.sub.0.2 As/GaAs heterostructure designed for .lambda.=1.06 .mu.m incident light. The SH light intensity generated in reflection from the heterostructure is enhanced 70 times relative to the SH response of a homogeneous GaAs wafer. A Fabry-Perot resonant cavity design employs this structure to make thin films with extremely high SH generation efficiencies. This is of particular interest used in vertical cavity surface emitting lasers (VCSELs).
    Type: Grant
    Filed: June 28, 1993
    Date of Patent: April 18, 1995
    Assignee: National Research Council of Canada
    Inventors: Siegfried Janz, Hongxing Dai, Francoise Chatenoud, Michel Dion, Richard Normandin, Chan Fernando