Patents by Inventor Chandramouli Visweswariah

Chandramouli Visweswariah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977375
    Abstract: An example method comprises receiving historical wind turbine failure data and asset data from SCADA systems, receiving first historical sensor data, determining healthy assets of the renewable energy assets by comparing signals to known healthy operating signals, training at least one machine learning model to indicate assets that may potentially fail and to a second set of assets that are operating within a healthy threshold, receiving first current sensor data of a second time period, applying a machine learning model to the current sensor data to generate a first failure prediction a failure and generate a list of assets that are operating within a healthy threshold, comparing the first failure prediction to a trigger criteria, generating and transmitting a first alert if comparing the first failure prediction to the trigger criteria indicates a failure prediction, and updating a list of assets to perform surveillance if within a healthy threshold.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: May 7, 2024
    Assignee: Utopus Insights, Inc.
    Inventors: Chandramouli Visweswariah, Lars Toghill, Joel Igba, Neil Desai, Younghun Kim, Yajuan Wang
  • Publication number: 20230152795
    Abstract: An example method comprises receiving historical wind turbine failure data and asset data from SCADA systems, receiving first historical sensor data, determining healthy assets of the renewable energy assets by comparing signals to known healthy operating signals, training at least one machine learning model to indicate assets that may potentially fail and to a second set of assets that are operating within a healthy threshold, receiving first current sensor data of a second time period, applying a machine learning model to the current sensor data to generate a first failure prediction a failure and generate a list of assets that are operating within a healthy threshold, comparing the first failure prediction to a trigger criteria, generating and transmitting a first alert if comparing the first failure prediction to the trigger criteria indicates a failure prediction, and updating a list of assets to perform surveillance if within a healthy threshold.
    Type: Application
    Filed: November 16, 2022
    Publication date: May 18, 2023
    Applicant: Utopus Insights, Inc.
    Inventors: Chandramouli Visweswariah, Lars Toghill, Joel Igba, Neil Desai, Younghun Kim, Yajuan Wang
  • Patent number: 11509136
    Abstract: An example method comprises receiving historical wind turbine failure data and asset data from SCADA systems, receiving first historical sensor data, determining healthy assets of the renewable energy assets by comparing signals to known healthy operating signals, training at least one machine learning model to indicate assets that may potentially fail and to a second set of assets that are operating within a healthy threshold, receiving first current sensor data of a second time period, applying a machine learning model to the current sensor data to generate a first failure prediction a failure and generate a list of assets that are operating within a healthy threshold, comparing the first failure prediction to a trigger criteria, generating and transmitting a first alert if comparing the first failure prediction to the trigger criteria indicates a failure prediction, and updating a list of assets to perform surveillance if within a healthy threshold.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: November 22, 2022
    Assignee: Utopus Insights, Inc.
    Inventors: Chandramouli Visweswariah, Lars Toghill, Joel Igba, Neil Desai, Younghun Kim, Yajuan Wang
  • Patent number: 11176504
    Abstract: A method for assessing an asset status is provided. The method may include identifying, by a processor, an asset within a plurality of tangible, deployed assets. The method may also include retrieving a plurality of images from at least one data repository, whereby the plurality of images are captured within a preconfigured distance of the identified asset. The method may further include determining a portion of the retrieved plurality of images depict the identified asset. The method may also include performing a plurality of image processing techniques on the determined portion. The method may further include creating an assessment of the asset status of the identified asset based on the performed plurality of image processing techniques, whereby the created assessment details whether the identified asset needs a repair or a replacement.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: November 16, 2021
    Assignee: International Business Machines Corporation
    Inventors: Younghun Kim, Abhishek Raman, Chandramouli Visweswariah
  • Patent number: 10970448
    Abstract: Systems and methods for improving timing closure of new and existing IC chips by breaking at least one parameter of interest into two or more partial parameters. More specifically, a method is provided for that includes propagating at least one timing analysis run for a semiconductor product. The method further includes identifying at least one parameter of interest used in the at least one timing analysis run. The method further includes splitting the at least one parameter into two parts comprising a controlled part and an uncontrolled part. The method further includes correlating or anti-correlating the controlled part with another parameter used in the at least one timing analysis run. The method further includes projecting timing using the correlation or anti-correlation between the controlled part and the another parameter and using the uncontrolled part of the at least one parameter.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: April 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Jeffrey G. Hemmett, Lansing D. Pickup, Natesan Venkateswaran, Chandramouli Visweswariah, Vladimir Zolotov
  • Patent number: 10891409
    Abstract: A method for locating an anomaly in a fluid transmission pipeline system is provided. The method may include receiving data for one or more physical conditions measured at an input and output of a pipeline portion, performing multiple simulations on a model of the pipeline portion to determine sets of simulated conditions that respectively correspond to simulated leak locations, determining a probability for a leak at one or more of the simulated leak locations by comparing one or more sets of simulated conditions to the received output data, and determining a highest probability location for the leak based on the probability for the leak at the one or more of the simulated leak locations. At least one simulation of the multiple simulations may be performed as a stochastic process and may be based on the received input data.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: January 12, 2021
    Assignee: International Business Machines Corporation
    Inventors: Tarun Kumar, Chandramouli Visweswariah, Bo Zhang, Rui Zhang
  • Publication number: 20200159976
    Abstract: A method for locating an anomaly in a fluid transmission pipeline system is provided. The method may include receiving data for one or more physical conditions measured at an input and output of a pipeline portion, performing multiple simulations on a model of the pipeline portion to determine sets of simulated conditions that respectively correspond to simulated leak locations, determining a probability for a leak at one or more of the simulated leak locations by comparing one or more sets of simulated conditions to the received output data, and determining a highest probability location for the leak based on the probability for the leak at the one or more of the simulated leak locations. At least one simulation of the multiple simulations may be performed as a stochastic process and may be based on the received input data.
    Type: Application
    Filed: October 23, 2019
    Publication date: May 21, 2020
    Inventors: Tarun Kumar, Chandramouli Visweswariah, Bo Zhang, Rui Zhang
  • Patent number: 10606970
    Abstract: Examples of techniques for statistical static timing analysis of an integrated circuit are disclosed. In one example according to aspects of the present disclosure, a computer-implemented method is provided. The method comprises performing an initial statistical static timing analysis of the integrated circuit to create a parameterized model of the integrated circuit for a plurality of paths using a plurality of timing corners to calculate a timing value for each of the plurality of paths, each of the plurality of timing corners representing a set of timing performance parameters. The method further comprises determining at least one worst timing corner from the parameterized model for each of the plurality of paths based on the initial statistical static timing analysis and calculated timing value for each of the plurality of paths. The method also comprises performing a subsequent analysis of the integrated circuit using the at least one worst timing corner.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: March 31, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric A. Foreman, Jeffrey G. Hemmett, Kerim Kalafala, Gregory M. Schaeffer, Stephen G. Shuma, Alexander J. Suess, Natesan Venkateswaran, Chandramouli Visweswariah, Vladimir Zolotov
  • Patent number: 10489540
    Abstract: Solutions for integrating manufacturing feedback into an integrated circuit design are disclosed. In one embodiment, a computer-implemented method is disclosed including: defining an acceptable yield requirement for a first integrated circuit product; obtaining manufacturing data about the first integrated circuit product; performing a regression analysis on data representing paths in the first integrated circuit product to define a plurality of parameter settings based upon the acceptable yield requirement and the manufacturing data; determining a projection corner associated with the parameter settings for satisfying the acceptable yield requirement; and modifying a design of a second integrated circuit product based upon the projection corner and the plurality of parameter settings.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: November 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Jeffrey G. Hemmett, Natesan Venkateswaran, Chandramouli Visweswariah, Xiaoyue Wang, Vladimir Zolotov
  • Publication number: 20190340323
    Abstract: Systems and methods for improving timing closure of new and existing IC chips by breaking at least one parameter of interest into two or more partial parameters. More specifically, a method is provided for that includes propagating at least one timing analysis run for a semiconductor product. The method further includes identifying at least one parameter of interest used in the at least one timing analysis run. The method further includes splitting the at least one parameter into two parts comprising a controlled part and an uncontrolled part. The method further includes correlating or anti-correlating the controlled part with another parameter used in the at least one timing analysis run. The method further includes projecting timing using the correlation or anti-correlation between the controlled part and the another parameter and using the uncontrolled part of the at least one parameter.
    Type: Application
    Filed: July 18, 2019
    Publication date: November 7, 2019
    Inventors: Brian M. DREIBELBIS, John P. DUBUQUE, Eric A. FOREMAN, Jeffrey G. HEMMETT, Lansing D. PICKUP, Natesan VENKATESWARAN, Chandramouli VISWESWARIAH, Vladimir ZOLOTOV
  • Patent number: 10394982
    Abstract: Systems and methods for improving timing closure of new and existing IC chips by breaking at least one parameter of interest into two or more partial parameters. More specifically, a method is provided for that includes propagating at least one timing analysis run for a semiconductor product. The method further includes identifying at least one parameter of interest used in the at least one timing analysis run. The method further includes splitting the at least one parameter into two parts comprising a controlled part and an uncontrolled part. The method further includes correlating or anti-correlating the controlled part with another parameter used in the at least one timing analysis run. The method further includes projecting timing using the correlation or anti-correlation between the controlled part and the another parameter and using the uncontrolled part of the at least one parameter.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Jeffrey G. Hemmett, Lansing D. Pickup, Natesan Venkateswaran, Chandramouli Visweswariah, Vladimir Zolotov
  • Patent number: 10289776
    Abstract: Examples of techniques for statistical static timing analysis of an integrated circuit are disclosed. In accordance with aspects of the present disclosure, a computer-implemented method for statistical static timing analysis of an integrated circuit is provided. The method may comprise identifying a timing parameter that contributes to a delay calculation. The method may further comprise determining, by a processing device, whether the identified timing parameter significantly impacts the delay calculation. The method may also comprise, responsive to determining that the identified timing parameter does not significantly impact the delay calculation, avoiding a sensitivity calculation for the identified timing parameter.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: May 14, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathan Buck, Eric A. Foreman, Jeffrey G. Hemmett, Kerim Kalafala, Gregory M. Schaeffer, Stephen G. Shuma, Natesan Venkateswaran, Chandramouli Visweswariah, Vladimir Zolotov
  • Patent number: 10169527
    Abstract: A system to improve performance of a semiconductor chip design includes a hierarchical analysis module that determines a hierarchical arrangement of the semiconductor chip design. The hierarchical arrangement includes a plurality of arcs located at different levels internal to the semiconductor chip design. The different levels include a macro level, a unit level and a core level. The system further includes a timing/load analysis module that determines first timing characteristics of at least one first arc in the macro level based on a first load applied to the at least one first arc. The system further determines second timing characteristics of at least one second arc in at least one of the unit level and the core level based on the first timing characteristics, with a portion of the second timing characteristics determined irrespective of the first load.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: January 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hemlata Gupta, Debjit Sinha, Chandramouli Visweswariah
  • Publication number: 20180285503
    Abstract: Examples of techniques for statistical static timing analysis of an integrated circuit are disclosed. In accordance with aspects of the present disclosure, a computer-implemented method for statistical static timing analysis of an integrated circuit is provided. The method may comprise identifying a timing parameter that contributes to a delay calculation. The method may further comprise determining, by a processing device, whether the identified timing parameter significantly impacts the delay calculation. The method may also comprise, responsive to determining that the identified timing parameter does not significantly impact the delay calculation, avoiding a sensitivity calculation for the identified timing parameter.
    Type: Application
    Filed: May 16, 2018
    Publication date: October 4, 2018
    Inventors: Nathan Buck, Eric A. Foreman, Jeffrey G. Hemmett, Kerim Kalafala, Gregory M. Schaeffer, Stephen G. Shuma, Natesan Venkateswaran, Chandramouli Visweswariah, Vladimir Zolotov
  • Patent number: 10055532
    Abstract: Statistically modeling timing in a digital circuit through the use of canonical form models, where some terms of the form represent sources of variation sensitive to only a subset of timing regions of the circuit. When propagating the form through regions through which some set of terms in the model is not sensitive, those terms are collapsed by placing them in a cache and replacing them in the form with a single combined term that references the cached terms.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 21, 2018
    Assignee: International Business Machines Corporation
    Inventors: Eric A. Foreman, Jeffrey G. Hemmett, Chandramouli Visweswariah, Vladimir Zolotov
  • Publication number: 20180232476
    Abstract: Examples of techniques for statistical static timing analysis of an integrated circuit are disclosed. In one example according to aspects of the present disclosure, a computer-implemented method is provided. The method comprises performing an initial statistical static timing analysis of the integrated circuit to create a parameterized model of the integrated circuit for a plurality of paths using a plurality of timing corners to calculate a timing value for each of the plurality of paths, each of the plurality of timing corners representing a set of timing performance parameters. The method further comprises determining at least one worst timing corner from the parameterized model for each of the plurality of paths based on the initial statistical static timing analysis and calculated timing value for each of the plurality of paths. The method also comprises performing a subsequent analysis of the integrated circuit using the at least one worst timing corner.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Inventors: Eric A. Foreman, Jeffrey G. Hemmett, Kerim Kalafala, Gregory M. Schaeffer, Stephen G. Shuma, Alexander J. Suess, Natesan Venkateswaran, Chandramouli Visweswariah, Vladimir Zolotov
  • Patent number: 10031985
    Abstract: Examples of techniques for statistical static timing analysis of an integrated circuit are disclosed. In accordance with aspects of the present disclosure, a computer-implemented method for statistical static timing analysis of an integrated circuit is provided. The method may comprise identifying a timing parameter that contributes to a delay calculation. The method may further comprise determining, by a processing device, whether the identified timing parameter significantly impacts the delay calculation. The method may also comprise, responsive to determining that the identified timing parameter does not significantly impact the delay calculation, avoiding a sensitivity calculation for the identified timing parameter.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: July 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathan Buck, Eric A. Foreman, Jeffrey G. Hemmett, Kerim Kalafala, Gregory M. Schaeffer, Stephen G. Shuma, Natesan Venkateswaran, Chandramouli Visweswariah, Vladimir Zolotov
  • Patent number: 10013516
    Abstract: Examples of techniques for statistical static timing analysis of an integrated circuit are disclosed. In one example according to aspects of the present disclosure, a computer-implemented method is provided. The method comprises performing an initial statistical static timing analysis of the integrated circuit to create a parameterized model of the integrated circuit for a plurality of paths using a plurality of timing corners to calculate a timing value for each of the plurality of paths, each of the plurality of timing corners representing a set of timing performance parameters. The method further comprises determining at least one worst timing corner from the parameterized model for each of the plurality of paths based on the initial statistical static timing analysis and calculated timing value for each of the plurality of paths. The method also comprises performing a subsequent analysis of the integrated circuit using the at least one worst timing corner.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: July 3, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric A. Foreman, Jeffrey G. Hemmett, Kerim Kalafala, Gregory M. Schaeffer, Stephen G. Shuma, Alexander J. Suess, Natesan Venkateswaran, Chandramouli Visweswariah, Vladimir Zolotov
  • Patent number: 9940431
    Abstract: A system to improve performance of a semiconductor chip design includes a hierarchical analysis module that determines a hierarchical arrangement of the semiconductor chip design. The hierarchical arrangement includes a plurality of arcs located at different levels internal to the semiconductor chip design. The different levels include a macro level, a unit level and a core level. The system further includes a timing/load analysis module that determines first timing characteristics of at least one first arc in the macro level based on a first load applied to the at least one first arc. The system further determines second timing characteristics of at least one second arc in at least one of the unit level and the core level based on the first timing characteristics, with a portion of the second timing characteristics determined irrespective of the first load.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: April 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hemlata Gupta, Debjit Sinha, Chandramouli Visweswariah
  • Publication number: 20180096089
    Abstract: Solutions for integrating manufacturing feedback into an integrated circuit design are disclosed. In one embodiment, a computer-implemented method is disclosed including: defining an acceptable yield requirement for a first integrated circuit product; obtaining manufacturing data about the first integrated circuit product; performing a regression analysis on data representing paths in the first integrated circuit product to define a plurality of parameter settings based upon the acceptable yield requirement and the manufacturing data; determining a projection corner associated with the parameter settings for satisfying the acceptable yield requirement; and modifying a design of a second integrated circuit product based upon the projection corner and the plurality of parameter settings.
    Type: Application
    Filed: November 13, 2017
    Publication date: April 5, 2018
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Jeffrey G. Hemmett, Natesan Venkateswaran, Chandramouli Visweswariah, Xiaoyue Wang, Vladimir Zolotov