Patents by Inventor Chang-Woo JEON

Chang-Woo JEON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240139718
    Abstract: The present invention is a perovskite metal oxide catalyst substituted with metal ions for reducing carbon deposition, a method for producing the same, and a process for performing a methane reforming reaction using this catalyst. The catalyst is produced in which Ni in ionic form is substituted at a portion of the Ti site of SrTiO3, MgTiO3, CaTiO3, or BaTiO3, which is a multi-component metal oxide having a perovskite structure. Then, various methane reforming reactions (steam-methane reforming, dry reforming of methane, catalytic partial oxidation of methane) may be efficiently and economically performed using this catalyst. The nickel-substituted perovskite metal oxide catalyst has a structure in which Ni2+ is substituted in the perovskite lattice structure. Thus, the metal oxide catalyst has advantages in that carbon deposition thereon does not occur, and thus, the catalyst has a high catalytic stability and may be used for a long time.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 2, 2024
    Inventors: Chang Hyun KO, Ji Yoon Jeon, Jeong Woo Yun, Eun Gyong Park
  • Publication number: 20240128022
    Abstract: A ceramic electronic component includes a body including a dielectric layer and an internal electrode; and an external electrode disposed on the body and connected to the internal electrode. The dielectric layer includes a plurality of grains and grain boundaries disposed between adjacent grains. The grain boundary includes a secondary phase including Sn, a rare-earth element, and a first subcomponent. The rare-earth element includes at least one of Y, Dy, Ho, Er, Gd, Ce, Nd, Sm, Tb, Tm, La, Gd and Yb. The first subcomponent includes at least one of Si, Mg, and Al.
    Type: Application
    Filed: December 6, 2023
    Publication date: April 18, 2024
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jin Woo Kim, Chang Hak Choi, Seok Hyun Yoon, Ki Yong Lee, Jong Myeong Jeon
  • Publication number: 20240118196
    Abstract: In the case of a gas in which several gases are mixed, a type and concentration of the gas may be incorrectly measured when measured using only an optical band-pass filter. The invention of the present application is directed to providing a technology in which a plurality of broadband band-pass filters having overlapping regions are provided to calculate a magnitude of absorption for each wavelength band for light passing through each broadband band-pass filter, thereby identifying the presence of a gas of interest and the presence of a gas other than the gas of interest.
    Type: Application
    Filed: September 8, 2023
    Publication date: April 11, 2024
    Inventors: Cheol Woo NAM, Byung Yul MOON, Eung Yul KIM, Jae Hwan KIM, Chun Ho SHIN, Kwang Hun PARK, Myun Gu CHOI, Chang Hwang CHOI, Yong Geol KIM, Jae Min JEON
  • Patent number: 11918981
    Abstract: The present invention relates to a perovskite metal oxide catalyst substituted with metal ions for reducing carbon deposition, a method for producing the same, and a process for performing a methane reforming reaction using this catalyst. According to the present invention, a novel type of catalyst is produced in which Ni, iron or cobalt in ionic form is substituted at a portion of the Ti site (B-site) of SrTiO3, MgTiO3, CaTiO3 or BaTiO3, which is a multicomponent metal oxide having a perovskite (ABO3) structure. Then, various methane reforming reactions (e.g., steam-methane reforming (SMR), dry reforming of methane (DRM), catalytic partial oxidation of methane (CPOM), etc.) may be efficiently and economically performed using this catalyst. The nickel-substituted perovskite metal oxide catalyst according to the present invention has a structure in which Ni2+, Co2+, Fe2+, Co3+ or Fe3+ is substituted in the perovskite lattice structure.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: March 5, 2024
    Assignee: INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY
    Inventors: Chang Hyun Ko, Ji Yoon Jeon, Jeong Woo Yun, Eun Gyong Park
  • Patent number: 11168386
    Abstract: The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having an FCC single-phase microstructure at 700° C. or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Co: 3-12 at %; Cr: 3-18 at %; Fe: 3-50 at %; Mn: 3-20 at %; Ni: 17-45 at %; V: 3-12 at %; and unavoidable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less, and the sum of the V content and the Co content is 22 at % or less.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: November 9, 2021
    Assignees: POSTECH ACADEMY-INDUSTRY FOUNDATION, THE INDUSTRY & ACADEMIC COOPERATION IN CHUNGNAM NATIONAL UNIVERSITY
    Inventors: Byeong-joo Lee, Sung-hak Lee, Hyoung-seop Kim, Young-sang Na, Sun-ig Hong, Won-mi Choi, Chang-woo Jeon, Seung-mun Jung
  • Patent number: 10988834
    Abstract: The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having an FCC single-phase microstructure at 700° C. or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Cr: 3-18 at %; Fe: 3-60 at %; Mn: 3-40 at% ; Ni: 20-80 at %: 3-12 at %; and unavoidable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: April 27, 2021
    Assignees: POSTECH ACADEMY-INDUSTRY FOUNDATION, THE INDUSTRY & ACADEMIC COOPERATION IN CHUNGNAM NATIONAL UNIVERSITY
    Inventors: Byeong-joo Lee, Sung-hak Lee, Hyoung-seop Kim, Young-sang Na, Sun-ig Hong, Won-mi Choi, Chang-woo Jeon, Seung-mun Jung
  • Publication number: 20190071755
    Abstract: The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having an FCC single-phase microstructure at 700° C. or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Co: 3-12 at %; Cr: 3-18 at %; Fe: 3-50 at %; Mn: 3-20 at %; Ni: 17-45 at %; V: 3-12 at %; and unavoidable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less, and the sum of the V content and the Co content is 22 at % or less.
    Type: Application
    Filed: March 21, 2017
    Publication date: March 7, 2019
    Inventors: Byeong-joo LEE, Sung-hak LEE, Hyoung-seop KIM, Young-sang NA, Sun-ig HONG, Won-mi CHOI, Chang-woo JEON, Seung-mun JUNG
  • Publication number: 20190055630
    Abstract: The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having an FCC single-phase microstructure at 700° C. or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Cr: 3-18 at %; Fe: 3-60 at %; Mn: 3-40 at% ; Ni: 20-80 at %: 3-12 at %; and unavoidable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less.
    Type: Application
    Filed: March 21, 2017
    Publication date: February 21, 2019
    Inventors: Byeong-joo LEE, Sung-hak LEE, Hyoung-seop KIM, Young-sang NA, Sung-ig HONG, Won-mi CHOI, Chang-woo JEON, Seung-mum JUNG
  • Publication number: 20180257180
    Abstract: According to an embodiment of the present disclosure, an anodizable aluminum clad sheet may comprise a base material including a 7xxx-series aluminum alloy and a coat material including a 6xxx-series aluminum alloy or a 1xxx-series aluminum alloy disposed on one or both front and back surfaces of the base material, wherein the 7xxx-series aluminum alloy includes 4.0% to 8.0% of zinc (Zn) relative to a total weight of the aluminum clad sheet, 1.0% to 3.0% of magnesium (Mg) relative to the total weight of the aluminum clad sheet, and the rest being aluminum (Al) and at least one other impurity. According to an embodiment of the present disclosure, a method for manufacturing an aluminum clad sheet may enhance the adhesion strength of the clad sheet by employing thermal treatment after forming the clad sheet and may age-harden the clad sheet without deteriorating strength, thereby achieving superior surface and engineering properties.
    Type: Application
    Filed: February 15, 2018
    Publication date: September 13, 2018
    Inventors: Chang-Woo JEON, Su-Dong MOON, Jin-Man PARK, Jae-Won SIM