Patents by Inventor Changdong LI

Changdong LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240018014
    Abstract: The present disclosure discloses a high-performance lithium-nickel-manganese-cobalt oxide (LNMCO) cathode material for power batteries and a preparation method thereof, and belongs to the technical field of lithium-ion battery (LIB) materials. The preparation method of an LNMCO cathode material of the present disclosure combines a melting and mixing method, a spray drying method, a sol-gel method, and a high-temperature solid-phase method to achieve thorough mixing of various components of a precursor, such that a prepared product has a uniform particle size, excellent electrochemical performance, and high cycling stability. The method has simple operation steps, low raw material cost, small time consumption, and high production efficiency, and can realize industrialized large-scale production. The present disclosure also provides an LNMCO cathode material prepared by the method, which has high specific charge/discharge capacity, thermal stability, and cycling stability.
    Type: Application
    Filed: August 4, 2023
    Publication date: January 18, 2024
    Inventors: Yinghao Xie, Haijun Yu, Changdong Li
  • Publication number: 20240021904
    Abstract: The present disclosure belongs to the technical field of battery recycling, and discloses a recycling method and use of lithium iron phosphate (LFP) waste. The method includes the following steps: mixing the LFP waste with water to prepare a slurry; adjusting a pH of the slurry to higher than 7.0 with an alkali, and heating to react; filtering a resulting mixture to obtain a filter residue; dissolving the filter residue in an acid, and filtering to obtain a filtrate; adding an oxalate-containing solution to react, and aging and filtering a resulting mixture to obtain a filter cake and a precipitation mother liquor; and subjecting the filter cake to slurrying, washing, and free water removal to obtain ferrous oxalate.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 18, 2024
    Inventors: Jinliang Duan, Changdong Li, Yang Xia, Dingshan Ruan, Ruokui Chen, Yanchao Qiao
  • Publication number: 20240018012
    Abstract: The present disclosure belongs to the technical field of metal oxide materials, and discloses a synthesis method of cobalt hydroxide and cobalt hydroxide. The synthesis method includes: (1) stirring and heating ammonium citrate, introducing a protective gas, adding a cobalt salt and a mixed alkali liquor to allow a reaction, and adjusting a pH to obtain a cobalt hydroxide slurry; and (2) subjecting the cobalt hydroxide slurry to alkali-leaching, filtering, and slurrying a resulting filter residue; and washing a resulting slurry with a detergent, and drying the resulting slurry to obtain the cobalt hydroxide. In the present disclosure, ammonium citrate is used as a base solution, and a cobalt solution and a mixed alkali liquor are added to synthesize a cobalt hydroxide slurry in one step under a protective atmosphere.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 18, 2024
    Inventors: Haihan Hu, Changdong Li, Genghao Liu, Xinghua Lu, Dingshan Ruan, Yong Cai
  • Patent number: 11876209
    Abstract: Disclosed are a pre-lithiated lithium ion positive electrode material, a preparation method therefor and use thereof. The lithium ion positive electrode material has a chemical formula of Li2O/[A(3-x)Mex]1/3-LiAO2, wherein A comprises M, and wherein M is at least one of Ni, Co, and Mn; and wherein Me is at least one of Ni, Mn, Al, Mg, Ti, Zr, Y, Mo, W, Na, Ce, Cr, Zn or Fe; and wherein 0<x<0.1. The material is co-doped with multiple elements, and these elements act synergistically to inhibit the irreversible phase change at a high voltage and improve the stability of the structure of a substrate. The spinel phase A(3-x)MexO4 structure contains the doping elements, which work together to improve the interfacial activity of the material and introduce more electrochemically active sites.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: January 16, 2024
    Assignees: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP VEHICLES RECYCLING CO. LTD.
    Inventors: Bin Li, Dingshan Ruan, Linlin Mao, Shenghe Tang, Xingyu Wu, Changdong Li
  • Patent number: 11872595
    Abstract: Disclosed are a wet sorting process for a waste lithium battery and application thereof, which belong to the field of battery material recycling. The wet sorting process includes the following steps of carrying out wet ball milling on a sorting material of a waste lithium battery to obtain a ball-milled product, screening the ball-milled product to obtain a coarse-grained screened material, a medium-grained screened material and a fine-grained screened material, carrying out wet ball milling, screening, magnetic separation and table concentration on the medium-grained screened material to obtain copper, aluminum and a steel shell, and carrying out flotation, magnetic separation and table concentration on the fine-grained screened material to obtain cathode material powder, graphite, copper and aluminum.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: January 16, 2024
    Assignees: HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP EV RECYCLING CO., LTD.
    Inventors: Jieming Zhao, Qinxue Gong, Ruokui Chen, Qiang Li, Changdong Li
  • Publication number: 20240014391
    Abstract: The present disclosure discloses a method for preparing a ternary cathode material with a molten salt and use thereof. The method includes: mixing a nickel salt, a cobalt salt, a manganese salt, a metal oxide and an acid liquor to obtain a mixed salt solution; concurrently adding the mixed salt solution, a sodium hydroxide solution and ammonia water to a base solution to allow a reaction to obtain a precursor; and mixing the precursor, a lithium source and a molten salt, and subjecting a resulting mixture to sintering, water-washing and annealing to obtain the ternary cathode material. In the present disclosure, a bismuth/antimony-doped ternary precursor is prepared, which is sintered with a molten salt, during which bismuth/antimony oxide is melted in the molten salt, then a resulting mixture is washed with water, and annealed to form a coating layer on a surface of the material.
    Type: Application
    Filed: September 22, 2023
    Publication date: January 11, 2024
    Inventors: Haijun Yu, Yinghao Xie, Aixia Li, Xuemei Zhang, Changdong Li
  • Publication number: 20240011709
    Abstract: This application discloses a cathode material drying device and a cathode material drying production line. The cathode material drying device includes: a rotary kiln, where a kiln head and a kiln tail of the rotary kiln each are provided with a sealing structure and the rotary kiln can rotate relative to the sealing structure; and an exhaust system comprising an air inlet pipe, an air outlet pipe, and a first fan, where the air inlet pipe communicates with the kiln tail of the rotary kiln through the sealing structure; the air outlet pipe communicates with the kiln head of the rotary kiln through the sealing structure; and the first fan is arranged on the air inlet pipe and/or the air outlet pipe, so as to make an air flow direction in the rotary kiln opposite to a delivery direction of a cathode material.
    Type: Application
    Filed: September 22, 2023
    Publication date: January 11, 2024
    Inventors: Tengyue Ma, Kuiwen Shen, Dong Peng, Yunguang Yang, Changdong Li
  • Publication number: 20240010494
    Abstract: The present disclosure discloses a preparation method of a layered carbon-doped sodium iron phosphate cathode material, including: placing a carbonate powder in an inert atmosphere, introducing a gaseous organic matter, and heating to allow a reaction to obtain a MCO3/C layered carbon material; and mixing the MCO3/C layered carbon material, a sodium source, ferrous phosphate, and a dispersing agent in an inert atmosphere, grinding a resulting mixture, washing and drying to remove the dispersing agent, and heating to allow a reaction in an inert atmosphere to obtain the layered carbon-doped sodium iron phosphate cathode material.
    Type: Application
    Filed: September 25, 2023
    Publication date: January 11, 2024
    Inventors: Haijun Yu, Yingsheng Zhong, Aixia Li, Yinghao Xie, Xuemei Zhang, Changdong Li
  • Publication number: 20240014382
    Abstract: The present disclosure belongs to the technical field of battery materials, and discloses a silicon/carbon composite anode material, and a preparation method and use thereof. The preparation method includes the following steps: S1. dissolving a graphite anode powder in an acid solution, and conducting solid-liquid separation (SLS) to obtain a precipitate; and washing and drying the precipitate, adding a reducing agent, and subjecting a resulting mixture to heat treatment to obtain a purified graphite material; and S2. mixing a modified silicon powder with the graphite material, adding a resulting mixture to a polyimide (PI)-containing N,N-dimethylformamide (DMF) solution, and stirring; and subjecting a resulting mixture to distillation and then to carbonization to obtain the silicon/carbon composite anode material.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Applicants: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP EV RECYCLING CO., LTD.
    Inventors: Xia Fan, Changdong Li, Zhenhua Zhang, Linlin Mao, Dingshan Ruan, Yong Cai
  • Patent number: 11870095
    Abstract: The present invention relates to the field of waste battery recycling, and discloses a method for treating waste diaphragm paper of a lithium battery, which includes the following steps of: (1) shearing and crushing waste diaphragm paper, and then carrying out pneumatic separation to obtain a light material and a copper-aluminum mixture; (2) putting the light material into a flotation machine for separation to obtain diaphragm paper and battery powder; and (3) pulping the battery powder, and then carrying out leaching of hydrometallurgy, pickling the diaphragm paper, and then filtering and spin-drying to obtain the diaphragm paper. According to the method, the diaphragm paper is treated by a method combining physics and chemistry, so that valuable metals in the waste diaphragm paper of the lithium battery are effectively recycled, and the industrial production requirements of environmental friendliness, low energy consumption and high resource recycling are satisfied.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: January 9, 2024
    Assignees: HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP EV REYCLING CO., LTD.
    Inventors: Haibing Cai, Qiang Li, Changdong Li, Ruokui Chen, Song Chen
  • Patent number: 11859974
    Abstract: In an unmanned system for monitoring lateral deformation of a landslide based on inertial measurement, a deformable coupling pipeline is disposed in a landslide mass. An unmanned trajectory tracer is provided with a battery, a motor wheel, an inertial sensor, and a single chip microcomputer that are electrically connected. The single chip microcomputer controls the motor wheel to drive the unmanned trajectory tracer to move back and forth in the deformable coupling pipeline. The single chip microcomputer controls the inertial sensor to measure a shape of the deformable coupling pipeline. Two monitoring piers are disposed at two ends of the deformable coupling pipeline respectively. The monitoring pier is provided with a GPS device and a communication device, the communication device is in communication connection with the single chip microcomputer, and the single chip microcomputer obtains the shape of the deformable coupling pipeline and sends to the communication device.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: January 2, 2024
    Assignee: CHINA UNIVERSITY OF GEOSCIENCES (WUHAN)
    Inventors: Yongquan Zhang, Huiming Tang, Junrong Zhang, Guiying Lu, Changdong Li, Qianyun Wang, Chengyuan Lin
  • Publication number: 20230411596
    Abstract: The invention belongs to the technical field of batteries, and discloses a preparation method and application of a lithium cobalt oxide soft-pack battery. The preparation method comprises the following steps: preparation of a lithium cobalt oxide positive electrode; preparation of a graphite negative electrode; preparation of an aluminum plastic film; screening and tab welding the positive and negative electrode, then winding core and packing, injecting an electrolyte to a resulting pack, perform first sealing, formation, second sealing; followed by capacity grading to obtain the lithium cobalt oxide soft pack battery. The preparation method for the lithium cobalt oxide soft-pack battery in a laboratory environment at room temperature provided by the present invention has simple operation and low environmental requirements, can be used in laboratories without dry room conditions, and reduces research and development cost and laboratory maintenance cost.
    Type: Application
    Filed: August 2, 2023
    Publication date: December 21, 2023
    Inventors: Xingyu Wu, Changdong Li, Dingshan Ruan, Linlin Mao, Maohua Feng, Bin Li
  • Publication number: 20230399238
    Abstract: The disclosure discloses a precursor with a transformed crystal form and a preparation method thereof. The preparation method includes: (1) heating a carbonate solution, a cobalt salt to allow a reaction, and spray adding a carbonate solution to allow a reaction to obtain a cobalt carbonate slurry; (2) allowing the slurry to stand, spray adding a cobalt salt and a carbonate solution, and spray adding a cobalt salt using a single spray head at a flow rate of 1 m3/h to 3 m3/h and a carbonate solution using no less than three spray heads each at a flow rate of 0.2 m3/h to 5 m3/h to obtain cobalt carbonate with a transformed crystal form; and (3) further spray adding a cobalt salt and a carbonate solution to the cobalt carbonate with a transformed crystal form, heating to allow a constant-temperature reaction, and washing and calcining a product.
    Type: Application
    Filed: August 28, 2023
    Publication date: December 14, 2023
    Inventors: Bin Li, Changdong Li, Xinghua Lu, Weijian Liu, Yong Cai, Dingshan Ruan
  • Publication number: 20230399240
    Abstract: Disclosed in the present invention is a method for preparing nickel sulfate from a nickel-iron-copper alloy. The method comprises: in a high-pressure oxygen environment, mixing a nickel-iron-copper alloy crushed material, aqueous ammonia, ammonium sulphate, and a corrosion assisting agent, leaching, then performing solid-liquid separation on the leached slurry, adding a precipitant into a filtrate, and performing ammonia distillation to obtain a nickel-containing leachate; then adding an extractant into the nickel-containing leachate to extract nickel so as to obtain a nickel-containing extraction organic phase; and then adding sulfuric acid into the nickel-containing extraction organic phase to perform back extraction of nickel so as to obtain a nickel sulfate solution.
    Type: Application
    Filed: June 6, 2022
    Publication date: December 14, 2023
    Inventors: Haijun YU, Yinghao XIE, Aixia LI, Xuemei ZHANG, Changdong LI
  • Patent number: 11840918
    Abstract: In a manual/automatic non-electric-connection borehole clinometer for a landslide, a clinometer probe completes borehole inclination measurement; a hoisting mechanism is connected to the clinometer probe by a pull rope; and a first tooth disc of an automatic clutch and a first tooth disc of a manual clutch are fixed to a left shaft end and a right shaft end of the hoisting mechanism respectively, a second tooth disc of the automatic clutch is fixed to a driving shaft of an electric driving mechanism and selectively meshes with or moves away from the first tooth disc of the automatic clutch, and a second tooth disc of the manual clutch is fixed to a driving shaft of a manual driving mechanism and selectively meshes with or moves away from the first tooth disc of the manual clutch.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: December 12, 2023
    Assignee: CHINA UNIVERSITY OF GEOSCIENCES (WUHAN)
    Inventors: Yongquan Zhang, Huiming Tang, Junrong Zhang, Changdong Li, Ding Xia, Chengyuan Lin, Qianyun Wang
  • Publication number: 20230395795
    Abstract: The present disclosure discloses a preparation method and use of a high-performance modified lithium-nickel-manganese-cobalt oxide (LNMCO) nickel 55 material. In the preparation method of the present disclosure, a silica template-containing nano-precursor coated with a polymer is prepared by electrospinning, and then the nano-precursor is sintered in the air to effectively provide effective embedding and attachment sites for subsequent nickel plating; and after the nickel plating, the silica template is removed such that distributed mesopores are generated in situ on the precursor. The mesopores provide channels for the subsequent penetration of molten lithium into the interior of the precursor material. A final prepared material has a better ion and electron conduction structure compared with traditional granular materials. The present disclosure also discloses a material prepared by the method. The present disclosure also discloses an LIB including the high-performance modified LNMCO nickel 55 material.
    Type: Application
    Filed: August 16, 2023
    Publication date: December 7, 2023
    Inventors: Yinghao Xie, Jianxiao Tang, Xuemei Zhang, Yannan Ou, Banglai Ming, Haijun Yu, Changdong Li
  • Publication number: 20230391635
    Abstract: The present invention discloses a radially-structured nickel-based precursor and a preparation method thereof. An overall shape of the precursor is a secondary sphere formed by agglomeration of primary crystal grains; and the secondary sphere has a loose and porous network core inside and uniform and regular strip primary crystal grains outside, and the strip primary crystal grains grow outward perpendicularly to a surface of the core and are arranged radially and closely. The precursor structure of the present invention is more suitable for high-power battery cathode materials. The internal loose structure is more likely to form a void in the center during a preparation process of a cathode material, which helps to expand a contact area between an active material and an electrolyte.
    Type: Application
    Filed: August 18, 2023
    Publication date: December 7, 2023
    Inventors: Weiquan Li, Changdong Li, Dingshan Ruan, Yong Cai, Genghao Liu, Hongjia Lin
  • Publication number: 20230395888
    Abstract: A method for recovering lithium battery slurry, the method comprising: pretreating lithium battery slurry, and then subjecting the pretreated lithium battery slurry to centrifugal spray drying to separate a solid phase and a solvent. A device for the recovery of lithium battery slurry is a centrifugal spray drying system, and comprises a spray chamber (100), a cyclone separator (200), a condenser (400), a condensate storage tank (500), and a rectification tower (600); the system improves upon original centrifugal spray drying devices, and is designed to combine the processes of centrifugal spray drying and NMP condensation recovery, such that NMP can be directly recovered after separation of positive electrode material and the NMP.
    Type: Application
    Filed: June 6, 2022
    Publication date: December 7, 2023
    Inventors: Peichao Ning, Changdong Li, You Zhou, Qiang Li, Dingshan Ruan, Song Chen
  • Patent number: 11837734
    Abstract: The invention pertains to the field of catalysts. Disclosed is a method for preparing an oxygen reduction catalyst employing graphite of a negative electrode of a waste battery. The method comprises the following steps: (1) recovering graphite slag from a waste battery, then performing heat treatment on the graphite slag; (2) performing ball-milling and mixing on the treated graphite slag, an iron salt, and a nitrogenous organic compound to acquire a catalyst precursor; (3) performing carbonization treatment on the catalyst precursor in an inert gas atmosphere to acquire a carbon-based mixture comprising iron and nitrogen; and (4) dissolving the carbon-based mixture comprising iron and nitrogen in an acid solution, performing filtration and drying, performing carbonization treatment again in an inert gas atmosphere, so as to acquire an oxygen reduction catalyst employing graphite of a negative electrode of a waste battery.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: December 5, 2023
    Assignee: Guangdong Brunp Recycling Technology Co., Ltd.
    Inventors: Ke Zou, Dingshan Ruan, Changdong Li, Yuan Wang, Fengmei Wang, Lin Wu
  • Publication number: 20230382761
    Abstract: The present disclosure discloses a preparation method of tungsten-doped cobalt tetraoxide and use thereof. The preparation method includes the following steps: dissolving a tungsten-containing compound and a molybdenum-containing compound in an alkali liquid to obtain a mixed solution; concurrently feeding the mixed solution, a cobalt salt solution, and a complexing agent into a base solution to allow a reaction to obtain a precipitate; roasting the precipitate in an oxygen-containing atmosphere to obtain a roasted material; and soaking the roasted material in a sodium sulfide solution to obtain the tungsten-doped cobalt tetraoxide. In the present disclosure, tungsten is doped, and tungsten has a large atomic radius, which stabilizes an internal structure of the material, expands the ion channel, and improves the cycling performance of the material; and molybdenum is removed through a soaking process, which provides atomic vacancies to further improve a specific capacity of the material.
    Type: Application
    Filed: August 14, 2023
    Publication date: November 30, 2023
    Inventors: Haijun Yu, Yinghao Xie, Aixia Li, Xuemei Zhang, Changdong Li