Patents by Inventor Changze Liu

Changze Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9099500
    Abstract: The present invention discloses a hexagonal programmable array based on a silicon nanowire field effect transistor and a method for fabricating the same. The array includes a nanowire device, a nanowire device connection region and a gate connection region, wherein, the nanowire device has a cylinder shape, and includes a silicon nanowire channel, a gate dielectric layer, and a gate region, the nanowire channel being surrounded by the gate dielectric layer, and the gate dielectric layer being surrounded by the gate region; the nanowire devices are arranged in a hexagon shape to form programming unit, the nanowire device connection region is a connection node of three nanowire devices and secured to a silicon supporter. The present invention can achieve a complex control logic of interconnections and is suitable for a digital/analog and a mixed-signal circuit having a high integration degree and a high speed.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 4, 2015
    Assignee: Peking University
    Inventors: Ru Huang, Jibin Zou, Runsheng Wang, Jiewen Fan, Changze Liu, Yangyuan Wang
  • Patent number: 9018968
    Abstract: Proposed is a method for testing the density and location of a gate dielectric layer trap of a semiconductor device. The testing method tests the trap density and two-dimensional trap location in the gate dielectric layer of a semiconductor device with a small area (the effective channel area is less than 0.5 square microns) using the gate leakage current generated by a leakage path. The present invention is especially suitable for testing a device with an ultra-small area (the effective channel area is less than 0.05 square microns). The present method can obtain trap distribution scenarios of the gate dielectric layer in the case of different materials and different processes.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: April 28, 2015
    Assignee: Peking University
    Inventors: Ru Huang, Jibin Zou, Changze Liu, Runsheng Wang, Jiewen Fan, Yangyuan Wang
  • Patent number: 8866507
    Abstract: A method for testing trap density in a gate dielectric layer of a semiconductor device having no substrate contact is provided in the invention. A source and a drain of the device are bilateral symmetric, and probes and cables of a test instrument connecting to the source and the drain are bilateral symmetric. Firstly, bias settings at the gate, the source and the drain are controlled so that the device is under an initial state that an inversion layer is not formed and traps in the gate dielectric layer impose no confining effects on charges.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: October 21, 2014
    Assignee: Peking University
    Inventors: Ru Huang, Jibin Zou, Runsheng Wang, Jiewen Fan, Changze Liu, Yangyuan Wang
  • Publication number: 20130214810
    Abstract: Proposed is a method for testing the density and location of a gate dielectric layer trap of a semiconductor device. The testing method tests the trap density and two-dimensional trap location in the gate dielectric layer of a semiconductor device with a small area (the effective channel area is less than 0.5 square microns) using the gate leakage current generated by a leakage path. The present invention is especially suitable for testing a device with an ultra-small area (the effective channel area is less than 0.05 square microns). The present method can obtain trap distribution scenarios of the gate dielectric layer in the case of different materials and different processes.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 22, 2013
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Jibin Zou, Changze Liu, Runsheng Wang, Jiewen Fan, Yangyuan Wang
  • Publication number: 20130075701
    Abstract: The present invention discloses a hexagonal programmable array based on a silicon nanowire field effect transistor and a method for fabricating the same. The array includes a nanowire device, a nanowire device connection region and a gate connection region, wherein, the nanowire device has a cylinder shape, and includes a silicon nanowire channel, a gate dielectric layer, and a gate region, the nanowire channel being surrounded by the gate dielectric layer, and the gate dielectric layer being surrounded by the gate region; the nanowire devices are arranged in a hexagon shape to form programming unit, the nanowire device connection region is a connection node of three nanowire devices and secured to a silicon supporter. The present invention can achieve a complex control logic of interconnections and is suitable for a digital/analog and a mixed-signal circuit having a high integration degree and a high speed.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 28, 2013
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Jibin Zou, Runsheng Wang, Jiewen Fan, Changze Liu, Yangyuan Wang
  • Publication number: 20120187976
    Abstract: A method for testing trap density in a gate dielectric layer of a semiconductor device having no substrate contact is provided in the invention. A source and a drain of the device are bilateral symmetric, and probes and cables of a test instrument connecting to the source and the drain are bilateral symmetric. Firstly, bias settings at the gate, the source and the drain are controlled so that the device is under an initial state that an inversion layer is not formed and traps in the gate dielectric layer impose no confining effects on charges.
    Type: Application
    Filed: September 29, 2011
    Publication date: July 26, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Jibin Zou, Runsheng Wang, Jiewen Fan, Changze Liu, Yangyuan Wang