Patents by Inventor Charlene Smith

Charlene Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070227190
    Abstract: A float glass chamber and related methods include a hot section having an atmosphere in at least the lower plenum with less than 3 percent hydrogen based on volume and a cold section having a different volume percent hydrogen.
    Type: Application
    Filed: June 8, 2007
    Publication date: October 4, 2007
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Charlene Smith, George Pecoraro
  • Publication number: 20070037688
    Abstract: A method for reducing the defect density of glass comprising melting a glass composition comprising from 65-75 wt. % of SiO2; from 10-20 wt. % of Na2O; from 5-15 wt. % of CaO; from 0-5 wt. % of MgO; from 0-5 wt. % of Al2O3; from 0-5 wt. % of K2O; from 0-2 wt. % Fe2O3; and from 0-2% FeO, wherein the glass composition has a total field strength index of greater than or equal to 1.23 is disclosed.
    Type: Application
    Filed: October 20, 2006
    Publication date: February 15, 2007
    Inventors: Charlene Smith, George Pecoraro
  • Publication number: 20070004579
    Abstract: Disclosed in the application are a synthetic silica glass having low fluence-dependent transmission, particularly at about 193 nm, and a process for making the same. The glass may desirably exhibit a low level of fluorescence at 290 and 390 nm when activated at about 248 nm. The glass may desirably exhibit low level of LIWFD, [SiH*] and/or [ODC].
    Type: Application
    Filed: October 28, 2005
    Publication date: January 4, 2007
    Inventors: Dana Bookbinder, Kenneth Hrdina, Glenn Kohnke, Lisa Moore, Susan Schiefelbein, Charlene Smith, Ulrich Neukirch
  • Publication number: 20060137399
    Abstract: Disclosed are synthetic silica glass having a low polarization-induced birefringence, process for making the glass and lithography system comprising optical element made of the glass. The silica glass has a polarization-induced birefringence measured at 633 nm of less than about 0.1 nm/cm when subjected to excimer laser pulses at about 193 nm having a fluence of about 40 ?J·cm?2·pulse?1 and a pulse length of about 25 ns for 5×109 pulses.
    Type: Application
    Filed: September 30, 2005
    Publication date: June 29, 2006
    Inventors: Douglas Alan, Dana Bookbinder, Ulrich Neukirch, Charlene Smith
  • Publication number: 20060037362
    Abstract: Lithographic methods are disclosed. In one such method, a pulsed ultraviolet radiation source for producing ultraviolet lithography radiation having a wavelength shorter than about 300 nm at a fluence of less than 10 mJ/cm2/pulse and a high purity fused silica lithography glass having a concentration of molecular hydrogen of between about 0.02×1018 molecules/cm3 and about 0.18×1018 molecules/cm3 are provided. A lithography pattern is formed with the ultraviolet lithography radiation; the lithography pattern is reduced to produce a reduced lithography pattern; and the reduced lithography pattern is projected onto a ultraviolet radiation sensitive lithography medium to form a printed lithography pattern. At least one of the forming, reducing, and projecting steps includes transmitting the ultraviolet lithography radiation through the high purity fused silica lithography glass. Lithography systems and high purity fused silica lithography glass are also described.
    Type: Application
    Filed: August 5, 2005
    Publication date: February 23, 2006
    Inventors: Nicholas Borrelli, Charlene Smith, Johannes Moll
  • Publication number: 20050112380
    Abstract: Disclosed is a synthetic silica glass optical material having high resistance to optical damage by ultraviolet radiation in the ultraviolet wavelength range, particularly in the wavelength region of less than about 250 nm and particularly, exhibiting a low laser induced density change. The synthetic silica glass optical material of the present invention contains at least about 0.1 ppm of aluminum and H2 concentration levels greater than about 0.5×1017 molecules/cm2. Additionally, the synthetic silica optical material of the present invention exhibits an H2 to Al ratio of greater than about 1.2, as measured in ×1017/cm3 molecules H2 per ppm Al.
    Type: Application
    Filed: November 24, 2004
    Publication date: May 26, 2005
    Inventors: Heather Boek, Christine Heckle, Johannes Moll, Charlene Smith
  • Publication number: 20050031970
    Abstract: The invention is directed to a method for determining metal fluoride crystals that are suitable for use in below 200 nm optical lithography by correlation of thermally stimulated current (TSC) measurements to fluence dependent transmission (FDT) measurements; and to metal fluoride crystals suitable for below 200 nm optical lithography, such crystals having a fluent dependent transmission slope that is linearly dependent on the thermally stimulated peak maximum. Crystals suitable for below 200 nm lithography can be determined by using the standard linear relationship between the TSC peak strengths and the FDT slopes without further more FDT measurements.
    Type: Application
    Filed: July 27, 2004
    Publication date: February 10, 2005
    Inventors: Chong An, Charlene Smith
  • Patent number: 6492072
    Abstract: High purity silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed. The inventive silicon oxyfluoride glass is transmissive at wavelengths around 157 nm, making it particularly useful as a photomask substrate at the 157 nm wavelength region. The inventive photomask substrate is a “dry,” silicon oxyfluoride glass which exhibits very high transmittance in the vacuum ultraviolet (VUV) wavelength region while maintaining the excellent thermal and physical properties generally associated with high purity fused silica. In addition to containing fluorine and having little or no OH content, the inventive silicon oxyfluoride glass suitable for use as a photomask substrate at 157 nm is also characterized by having less than 1×1017 molecules/cm3 of molecular hydrogen and low chlorine levels.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: December 10, 2002
    Assignee: Corning Incorporated
    Inventors: Lisa A. Moore, Charlene Smith
  • Publication number: 20020059810
    Abstract: Fused silica stepper lens for photolithographic application is disclosed which is resistant to laser-induced damage, specifically, compaction or densification which can lead to an increase in the optical path length of the lens.
    Type: Application
    Filed: October 26, 2001
    Publication date: May 23, 2002
    Applicant: Corning Incorporated
    Inventors: Nicholas F. Borrelli, Thomas P. Seward, Charlene Smith
  • Patent number: 6309991
    Abstract: Fused silica stepper lens for photolithographic application are disclosed which are resistant to laser-induced damage, specifically, compaction or densification which can lead to an increase in the optical path length of the lens. The figure compares the phase front distortions of a standard fused silica with the phase front distortions observed in two inventive stepper lens fused silica.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: October 30, 2001
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, Thomas P. Seward, III, Charlene Smith
  • Publication number: 20010014424
    Abstract: High purity silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed. The inventive silicon oxyfluoride glass is transmissive at wavelengths around 157 nm, making it particularly useful as a photomask substrate at the 157 nm wavelength region. The inventive photomask substrate is a “dry,” silicon oxyfluoride glass which exhibits very high transmittance in the vacuum ultraviolet (VUV) wavelength region while maintaining the excellent thermal and physical properties generally associated with high purity fused silica. In addition to containing fluorine and having little or no OH content, the inventive silicon oxyfluoride glass suitable for use as a photomask substrate at 157 nm is also characterized by having less than 1×1017 molecules/cm3 of molecular hydrogen and low chlorine levels.
    Type: Application
    Filed: March 6, 2001
    Publication date: August 16, 2001
    Inventors: Lisa A. Moore, Charlene Smith
  • Patent number: 6242136
    Abstract: High purity silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed. The inventive silicon oxyfluoride glass is transmissive at wavelengths around 157 nm, making it particularly useful as a photomask substrate at the 157 nm wavelength region. The inventive photomask substrate is a “dry,” silicon oxyfluoride glass which exhibits very high transmittance in the vacuum ultraviolet (VUV) wavelength region while maintaining the excellent thermal and physical properties generally associated with high purity fused silica. In addition to containing fluorine and having little or no OH content, the inventive silicon oxyfluoride glass suitable for use as a photomask substrate at 157 nm is also characterized by having less than 1×1017 molecules/cm3 of molecular hydrogen and low chlorine levels.
    Type: Grant
    Filed: September 16, 1999
    Date of Patent: June 5, 2001
    Assignee: Corning Incorporated
    Inventors: Lisa A. Moore, Charlene Smith
  • Patent number: 5735921
    Abstract: The invention relates to the production of high purity fused silica glass which is highly resistant to 248 nm excimer laser-induced optical damage. In particular, this invention relates to a fused silica optical member or blank.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: April 7, 1998
    Assignee: Corning Incorporated
    Inventors: Roger J. Araujo, Nicholas F. Borrelli, Christine L. Hoaglin, Charlene Smith
  • Patent number: 5668067
    Abstract: The invention relates to the production of high purity fused silica glass which is highly resistant to optical damage by ultraviolet radiation in the laser wavelength of about 300 nm or shorter. In particular, this invention relates to a fused silica optical member or blank which exhibits substantially no optical damage up to 10.sup.7 pulses (350 mJ/cm.sup.2) at the KrF laser wavelength region of about 248 nm, and at the ArF laser wavelength region of about 193 nm.
    Type: Grant
    Filed: August 19, 1996
    Date of Patent: September 16, 1997
    Assignee: Corning Incorporated
    Inventors: Roger J. Araujo, Nicholas F. Borrelli, Christine L. Hoaglin, Charlene Smith
  • Patent number: 5616159
    Abstract: High purity fused silica glass which is highly resistant to optical damage by ultraviolet radiation in the laser wavelength of about 300 nm or shorter is produced. In particular, a fused silica optical member or blank exhibits substantially no optical damage up to 10.sup.7 pulses (350 mJ/cm.sup.2) at the KrF laser wavelength region of about 248 nm, and at the ArF laser wavelength region of about 193 nm.
    Type: Grant
    Filed: April 14, 1995
    Date of Patent: April 1, 1997
    Assignee: Corning Incorporated
    Inventors: Roger J. Araujo, Nicholas F. Borrelli, Christine L. Hoaglin, Charlene Smith