Patents by Inventor Charles A. Drake

Charles A. Drake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080319826
    Abstract: A virtual market system is used to rank-order answers to an open-ended question. A virtual market on which participants can trade securities representing answers to the open-ended question is used to gather information from the participants regarding each answer. Answers to be traded on the market may be provided by the participants, allowing for opinions to be expressed not only as to the relative worth of the securities on the market, but also as to which securities should be on the market.
    Type: Application
    Filed: June 19, 2007
    Publication date: December 25, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Christina Ann LaComb, Janet Arlie Barnett, Scott Charles Drake, Steven Todd Sacks
  • Patent number: 7403439
    Abstract: Circuit arrangements and methods are provided for regulating and maintaining voltage on bitlines of a semiconductor memory device. According to one embodiment, first and second regulation devices are connected to a charging circuit. At the beginning of a charging period, voltage on the bitlines is regulated with the second regulation device as the bitlines are initially charged to a voltage. After initially charging the bitlines to the voltage, voltage on the bitlines is regulated with the first regulation device that also limits current to the bitlines when there is a leakage anomaly associated with the bitlines. According to another embodiment, a charging circuit that is connected to sense nodes of a sense amplifier while the sense nodes are connected to the bitlines is activated so that the charging circuit assists in charging the bitlines at the beginning of a charging period.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: July 22, 2008
    Assignee: Qimonda North America Corp.
    Inventors: Christopher Miller, Charles Drake
  • Patent number: 7387978
    Abstract: We disclose a method for converting toluene to xylenes, comprising contacting toluene with methanol in the presence of a silica-bound HZSM-5 catalyst. As an example, in one embodiment the method can include: (i) first silylating HZSM-5, to form silylated HZSM-5; (ii) first calcining the silylated HZSM-5, to form calcined silylated HZSM-5; (iii) binding the calcined silylated HZSM-5 to silica, to form silica-bound calcined silylated HZSM-5; (iv) extruding the silica-bound calcined silylated HZSM-5, to form extruded silica-bound calcined silylated HZSM-5; (v) second calcining the extruded silica-bound calcined silylated HZSM-5, to form extruded silica-bound twice-calcined silylated HZSM-5; (vi) second silylating the extruded silica-bound twice-calcined silylated HZSM-5, to form extruded silica-bound twice-calcined twice-silylated HZSM-5; and (vii) third calcining the extruded silica-bound twice-calcined twice-silylated HZSM-5, to form the silica-bound HZSM-5 catalyst.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: June 17, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 7323430
    Abstract: We disclose a method for preparing a catalyst for converting toluene to xylenes.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: January 29, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: An-hsiang Wu, Charles A. Drake
  • Publication number: 20070253265
    Abstract: Circuit arrangements and methods are provided for regulating and maintaining voltage on bitlines of a semiconductor memory device. According to one embodiment, first and second regulation devices are connected to a charging circuit. At the beginning of a charging period, voltage on the bitlines is regulated with the second regulation device as the bitlines are initially charged to a voltage. After initially charging the bitlines to the voltage, voltage on the bitlines is regulated with the first regulation device that also limits current to the bitlines when there is a leakage anomaly associated with the bitlines. According to another embodiment, a charging circuit that is connected to sense nodes of a sense amplifier while the sense nodes are connected to the bitlines is activated so that the charging circuit assists in charging the bitlines at the beginning of a charging period.
    Type: Application
    Filed: May 1, 2006
    Publication date: November 1, 2007
    Inventors: Christopher Miller, Charles Drake
  • Publication number: 20060240024
    Abstract: Regulatory T cells (Treg) limit autoimmunity but can also attenuate the magnitude of anti-pathogen and anti-tumor immunity. Understanding the mechanism of Treg function and therapeutic manipulation of Treg in vivo requires identification of Treg selective receptors. A comparative analysis of gene expression arrays from antigen specific CD4+ T cells differentiating to either an effector/memory or a regulatory phenotype revealed Treg selective expression of LAG-3 (CD223), a CD4-related molecule that binds MHC class II. LAG-3 expression on CD4+ T cells correlates with the cells' in vitro suppressor activity, and ectopic expression of LAG-3 on CD4 T cells confers suppressor activity on the T cells. Antibodies to LAG-3 inhibit suppression both in vitro and in vivo. LAG-3 marks regulatory T cell populations and contributes to their suppressor activity.
    Type: Application
    Filed: March 1, 2004
    Publication date: October 26, 2006
    Applicants: The Johns Hopkins University, St Jude Children's Research Hospital Inc.
    Inventors: Drew Pardoll, Ching-Tai Huang, Dario Vignali, Creg Workman, Jonathan Powell, Charles Drake
  • Publication number: 20060128556
    Abstract: We disclose a method for converting toluene to xylenes, comprising contacting toluene with methanol in the presence of a silica-bound HZSM-5 catalyst. As an example, in one embodiment the method can include: (i) first silylating HZSM-5, to form silylated HZSM-5; (ii) first calcining the silylated HZSM-5, to form calcined silylated HZSM-5; (iii) binding the calcined silylated HZSM-5 to silica, to form silica-bound calcined silylated HZSM-5; (iv) extruding the silica-bound calcined silylated HZSM-5, to form extruded silica-bound calcined silylated HZSM-5; (v) second calcining the extruded silica-bound calcined silylated HZSM-5, to form extruded silica-bound twice-calcined silylated HZSM-5; (vi) second silylating the extruded silica-bound twice-calcined silylated HZSM-5, to form extruded silica-bound twice-calcined twice-silylated HZSM-5; and (vii) third calcining the extruded silica-bound twice-calcined twice-silylated HZSM-5, to form the silica-bound HZSM-5 catalyst.
    Type: Application
    Filed: January 18, 2006
    Publication date: June 15, 2006
    Inventors: An-Hsiang Wu, Charles Drake
  • Publication number: 20060122052
    Abstract: We disclose a method for converting toluene to xylenes, comprising contacting toluene with methanol in the presence of a silica-bound HZSM-5 catalyst. As an example, in one embodiment the method can include: (i) first silylating HZSM-5, to form silylated HZSM-5; (ii) first calcining the silylated HZSM-5, to form calcined silylated HZSM-5; (iii) binding the calcined silylated HZSM-5 to silica, to form silica-bound calcined silylated HZSM-5; (iv) extruding the silica-bound calcined silylated HZSM-5, to form extruded silica-bound calcined silylated HZSM-5; (v) second calcining the extruded silica-bound calcined silylated HZSM-5, to form extruded silica-bound twice-calcined silylated HZSM-5; (vi) second silylating the extruded silica-bound twice-calcined silylated HZSM-5, to form extruded silica-bound twice-calcined twice-silylated HZSM-5; and (vii) third calcining the extruded silica-bound twice-calcined twice-silylated HZSM-5, to form the silica-bound HZSM-5 catalyst.
    Type: Application
    Filed: January 18, 2006
    Publication date: June 8, 2006
    Inventors: An-hsiang Wu, Charles Drake
  • Patent number: 7049260
    Abstract: We disclose a method for converting toluene to xylenes, comprising contacting toluene with methanol in the presence of a silica-bound HZSM-5 catalyst. As an example, in one embodiment the method can include: (i) first silylating HZSM-5, to form silylated HZSM-5; (ii) first calcining the silylated HZSM-5, to form calcined silylated HZSM-5; (iii) binding the calcined silylated HZSM-5 to silica, to form silica-bound calcined silylated HZSM-5; (iv) extruding the silica-bound calcined silylated HZSM-5, to form extruded silica-bound calcined silylated HZSM-5; (v) second calcining the extruded silica-bound calcined silylated HZSM-5, to form extruded silica-bound twice-calcined silylated HZSM-5; (vi) second silylating the extruded silica-bound twice-calcined silylated HZSM-5, to form extruded silica-bound twice-calcined twice-silylated HZSM-5; and (vii) third calcining the extruded silica-bound twice-calcined twice-silylated HZSM-5, to form the silica-bound HZSM-5 catalyst.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: May 23, 2006
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: An-hsiang Wu, Charles A. Drake
  • Publication number: 20050095414
    Abstract: A process belt and method for manufacturing the same are provided. The belt includes at least one elongated resilient coupling filament operatively connected to a first end section of the belt and to a second end section of the belt such that the first end section, the second end section and a body portion of the belt are substantially continuous with one another. The belt is configured to operatively engage a board processing machine configured to process a board stock or other paper product.
    Type: Application
    Filed: December 20, 2002
    Publication date: May 5, 2005
    Applicant: National Wire Fabric, Inc.
    Inventors: Michael Maguire, John Schmitt, Charles Drake
  • Publication number: 20040249226
    Abstract: We disclose a method for converting toluene to xylenes, comprising contacting toluene with methanol in the presence of a silica-bound HZSM-5 catalyst. As an example, in one embodiment the method can include: (i) first silylating HZSM-5, to form silylated HZSM-5; (ii) first calcining the silylated HZSM-5, to form calcined silylated HZSM-5; (iii) binding the calcined silylated HZSM-5 to silica, to form silica-bound calcined silylated HZSM-5; (iv) extruding the silica-bound calcined silylated HZSM-5, to form extruded silica-bound calcined silylated HZSM-5; (v) second calcining the extruded silica-bound calcined silylated HZSM-5, to form extruded silica-bound twice-calcined silylated HZSM-5; (vi) second silylating the extruded silica-bound twice-calcined silylated HZSM-5, to form extruded silica-bound twice-calcined twice-silylated HZSM-5; and (vii) third calcining the extruded silica-bound twice-calcined twice-silylated HZSM-5, to form the silica-bound HZSM-5 catalyst.
    Type: Application
    Filed: June 3, 2003
    Publication date: December 9, 2004
    Inventors: An-Hsiang Wu, Charles A. Drake
  • Patent number: 6784332
    Abstract: A hydrocarbon conversion process comprising contacting a hydrocarbon stream such as, for example, gasoline, with a catalyst composition to effect the conversion of the hydrocarbon to olefins and C6 to C8 aromatic hydrocarbons such as toluene and xylenes. The catalyst composition comprises a zeolite, a promoter and optionally a binder.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: August 31, 2004
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, Charles A. Drake, Jianhua Yao, An-hsiang Wu
  • Publication number: 20040011705
    Abstract: A catalyst composition comprising a nitrided and sulfided composition comprising a cobalt compound, a molybdenum compound, and an inorganic oxide compound. The catalyst composition is made by contacting a cobalt compound and a molybdenum compound with an inorganic oxide compound and then nitriding and sulfiding the Co/Mo-modified catalyst. The catalyst composition is used to hydrodesulfurize a heavy hydrocarbon feed containing organic sulfur compounds and aromatic compounds.
    Type: Application
    Filed: November 28, 2001
    Publication date: January 22, 2004
    Inventors: Charles A. Drake, An-hsiang Wu
  • Patent number: 6660894
    Abstract: A process is provided for upgrading an oligomerization product through hydrogenation and isomerization with some selective/minor cracking resulting in a synthetic lube base oil with improved pour point and viscosity index. The upgrading process includes contacting the oligomerization product with a hydrogenation catalyst and an isomerization catalyst under conversion conditions, which include the presence of hydrogen and a temperature sufficient to promote hydrogenation and isomerization with some selective/minor cracking. The hydrogenation catalyst contains a porous carrier material and a group VIII metal while the isomerization catalyst contains an aluminosilicate zeolite.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: December 9, 2003
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake, Ronald D. Knudsen
  • Patent number: 6638892
    Abstract: A process for the conversion of syngas by contact of syngas under conversion conditions with catalyst having as components zinc oxide, copper oxide, aluminum oxide, Y zeolite and clay in which (A) in a one step process for conversion of syngas to dimethyl ether, the catalyst has as components an extruded mixture of zinc oxide, copper oxide, gamma aluminum oxide, Y zeolite and clay; (B) in a two step process for conversion of syngas to light olefins, a catalyst system is employed that has in the first step a catalyst mixture of zinc oxide, copper oxide, aluminum oxide, Y zeolite and clay and the catalyst employed in the second step is SAPO-34; SAPO-34 modified with lanthanum(III) nitrate hexahydrate; SAPO-34 modified with magnesium nitrate hexahydrate; SAPO-34 modified with tributyl borate or SAPO-34 modified with triethyl phosphate or (C) in a two step process for conversion of syngas to light olefins, the pressure on the effluent from the contact of syngas with a mixture of zinc oxide, copper oxide, aluminum
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: October 28, 2003
    Assignee: ConocoPhillips Company
    Inventors: An-hsiang Wu, Jianhua Yao, Charles A. Drake
  • Patent number: 6627780
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: September 30, 2003
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Publication number: 20030166983
    Abstract: A catalyst composition and a process for converting a hydrocarbon stream such as, for example, gasoline to C6 to C8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The catalyst composition comprises an alumina, a silica, and a metal wherein the weight ratio of aluminum to silicon is in the range of from about 0.002:1 to about 0.6:1. The process comprises contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to a C6 to C8 aromatic hydrocarbon. Also disclosed is a process for producing the catalyst composition which comprises: (1) contacting a zeolite with an effective amount of an acid under a condition sufficient to effect a reduction in aluminum content of the zeolite to produce an acid-leached zeolite; and (2) impregnating the acid-leached zeolite with an effective amount of a metal compound under a condition sufficient to effect the production of a metal-promoted zeolite.
    Type: Application
    Filed: November 25, 2002
    Publication date: September 4, 2003
    Inventors: An-Hsiang Wu, Charles A. Drake, Ralph J. Melton
  • Patent number: 6593503
    Abstract: A catalyst composition and a process for converting a hydrocarbon stream such as, for example, gasoline to C6 to C8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The catalyst composition includes an alumina, a silica, and a metal wherein the weight ratio of aluminum to silicon is in the range of from about 0.002:1 to about 0.6:1. The process includes contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to a C6 to C8 aromatic hydrocarbon. Also disclosed is a process for producing the catalyst composition which includes: (1) contacting a zeolite with an effective amount of an acid under a condition sufficient to effect a reduction in aluminum content of the zeolite to produce an acid-leached zeolite; and (2) impregnating the acid-leached zeolite with an effective amount of a metal compound under a condition sufficient to effect the production of a metal-promoted zeolite.
    Type: Grant
    Filed: August 12, 1996
    Date of Patent: July 15, 2003
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake, Ralph J. Melton
  • Publication number: 20030125593
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Application
    Filed: January 9, 2003
    Publication date: July 3, 2003
    Applicant: Phillips Petroleum Company
    Inventors: An-Hsiang Wu, Charles A. Drake
  • Patent number: 6528450
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, and a coke suppressor selected from the group consisting of silicon oxides, phosphorus oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: March 4, 2003
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake