Patents by Inventor Charles Allan

Charles Allan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11966555
    Abstract: A system, method, and apparatus for measuring a workspace is provided. The method includes capturing a workspace that is virtually represented on a user interface display of a computing apparatus that image-captured the workspace. The user inputs, via the user interface, a value of a known measurement of a length represented in the virtual workspace. Through the user interface, along the virtual workspace, the user identifies virtual end boundary points of the length associated with the known measurement. The user then defines a defined space within the virtual workspace by placing additional virtual boundary points. The system calibrates from the inputted value and the virtual end boundary points of the known measurement all the remaining measurements of the surface area, which can be used to render a map display and calculate surface area, volume, or any other geometric aspects of the defined space.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: April 23, 2024
    Inventors: Charles Allan Wolford, Garrett Scott Isaacs
  • Patent number: 11932530
    Abstract: An example resonating structure comprises a substrate, a resonator body, and an anchoring body for anchoring the resonator body to the substrate. The resonator body includes a layer of base material and, deposited on top of the layer of base material, a layer of mismatch material having a mismatch in temperature coefficient of elasticity (TCE) relative to the base material. The base material is doped with a dopant having a concentration chosen so as to minimize a second order temperature coefficient of frequency for the resonator body. The thickness of the layer of the mismatch material is chosen so as to minimize a first order temperature coefficient of frequency for the resonator body.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: March 19, 2024
    Assignee: Stathera IP Holdings Inc.
    Inventors: George Xereas, Vahid Tayari, Ahmed Khorshid, Charles Allan
  • Publication number: 20230293203
    Abstract: A system for installing a sensor, the system comprising: a puncture device for puncturing a skin of a body comprising: a casing defining a cavity; an elongated member a sharp end; and a sensor assembly for measuring data about the body, the sensor assembly comprising: a sensing unit comprising a sensor for measuring the data and being engageable with the elongated member; a data unit for collecting the data, the data collecting unit being receivable within the cavity of the casing; and a communication cable extending between the sensing unit and the data collecting unit for transmitting the data to the data unit, the sensor assembly being removably securable to the puncture device by inserting the data unit in the cavity of the casing and engaging together the sensing unit and the elongated member, the communication cable being tensed when the sensor assembly is secured to the puncture device.
    Type: Application
    Filed: March 24, 2023
    Publication date: September 21, 2023
    Inventors: Edward J. HARVEY, Charles ALLAN, Blake LARIVIERE
  • Publication number: 20230236703
    Abstract: A system, method, and apparatus for measuring a workspace is provided. The method includes capturing a workspace that is virtually represented on a user interface display of a computing apparatus that image-captured the workspace. The user inputs, via the user interface, a value of a known measurement of a length represented in the virtual workspace. Through the user interface, along the virtual workspace, the user identifies virtual end boundary points of the length associated with the known measurement. The user then defines a defined space within the virtual workspace by placing additional virtual boundary points. The system calibrates from the inputted value and the virtual end boundary points of the known measurement all the remaining measurements of the surface area, which can be used to render a map display and calculate surface area, volume, or any other geometric aspects of the defined space.
    Type: Application
    Filed: January 9, 2023
    Publication date: July 27, 2023
    Inventors: Charles Allan Wolford, Garrett Scott Isaacs
  • Publication number: 20230183057
    Abstract: An example resonating structure comprises a substrate, a resonator body, and an anchoring body for anchoring the resonator body to the substrate. The resonator body includes a layer of base material and, deposited on top of the layer of base material, a layer of mismatch material having a mismatch in temperature coefficient of elasticity (TCE) relative to the base material. The base material is doped with a dopant having a concentration chosen so as to minimize a second order temperature coefficient of frequency for the resonator body. The thickness of the layer of the mismatch material is chosen so as to minimize a first order temperature coefficient of frequency for the resonator body.
    Type: Application
    Filed: February 6, 2023
    Publication date: June 15, 2023
    Inventors: George Xereas, Vahid Tayari, Ahmed Khorshid, Charles Allan
  • Patent number: 11633212
    Abstract: A system for installing a sensor, comprising: a puncture device comprising: a casing defining a cavity; an elongated member a sharp end; and a sensor assembly for measuring data about the body, the sensor assembly comprising: a sensing unit comprising a sensor for measuring the data and being engageable with the elongated member; a data unit for collecting the data, the data collecting unit being receivable within the cavity of the casing; and a communication cable extending between the sensing unit and the data collecting unit for transmitting the data to the data unit; wherein the sensor assembly is removably securable to the puncture device by inserting the data unit in the cavity of the casing and engaging together the sensing unit and the elongated member, the communication cable being tensed when the sensor assembly is secured to the puncture device.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: April 25, 2023
    Assignee: MY01 IP HOLDIDNGS INC.
    Inventors: Edward J. Harvey, Charles Allan, Blake Lariviere
  • Patent number: 11584635
    Abstract: A dual-output microelectromechanical system (MEMS) resonator can be operated selectively and concurrently in an in-plane mode of vibration and an out-of-plane mode of vibration to obtain, respectively, a first electrical signal having a first frequency and a second electrical signal having a second frequency that is less than the first frequency. The first and second electrical signals are mixed to obtain a third electrical signal having a third frequency, where the third frequency is proportional to a temperature of the MEMS resonator. The temperature is determined based on the third frequency. Values of the first and second frequencies can be adjusted based on the determined temperature to compensate for frequency deviations due to temperature deviations. Also described herein are methods and systems for determining the temperature of the dual-output MEMS and for performing frequency compensation, as well as a method of manufacturing the dual-output MEMS.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: February 21, 2023
    Assignee: Stathera IP Holdings Inc.
    Inventors: George Xereas, Vahid Tayari, Ahmed Khorshid, Charles Allan
  • Publication number: 20230037844
    Abstract: An implantable sensor assembly comprises a support structure including a board, a compliant structure disposed on a top surface of the board, and a sensor supported by the compliant structure above the top surface of the board. An aperture is formed in the support structure for exposing at least in part a face of the sensor. The sensor may be a pressure sensor having a sensing membrane exposed through the aperture formed in the support structure. A stiffener, which may be conductive, may be mounted to a bottom surface of the board. The sensor and other components may be covered by a polymer shell having a conductive cover or by a gel contained within a rigid cap, which may be conductive. An electromagnetic shield may be formed by an electrical connection between the conductive cover or the conductive rigid cap and the conductive stiffener.
    Type: Application
    Filed: January 15, 2021
    Publication date: February 9, 2023
    Inventors: George XEREAS, Charles ALLAN, Mohamad Nizar KEZZO, Vahid TAYARI, Christopher Benn AGELLON, Edward J. HARVEY, Animesh SAHA SHOVAN
  • Publication number: 20220227619
    Abstract: A dual-output microelectromechanical system (MEMS) resonator can be operated selectively and concurrently in an in-plane mode of vibration and an out-of-plane mode of vibration to obtain, respectively, a first electrical signal having a first frequency and a second electrical signal having a second frequency that is less than the first frequency. The first and second electrical signals are mixed to obtain a third electrical signal having a third frequency, where the third frequency is proportional to a temperature of the MEMS resonator. The temperature is determined based on the third frequency. Values of the first and second frequencies can be adjusted based on the determined temperature to compensate for frequency deviations due to temperature deviations. Also described herein are methods and systems for determining the temperature of the dual-output MEMS and for performing frequency compensation, as well as a method of manufacturing the dual-output MEMS.
    Type: Application
    Filed: April 8, 2022
    Publication date: July 21, 2022
    Inventors: George Xereas, Vahid Tayari, Ahmed Khorshid, Charles Allan
  • Patent number: 11305981
    Abstract: There is provided a dual-output microelectromechanical system (MEMS) resonator. The MEMS resonator can be operated selectively and concurrently in an in-plane mode of vibration and an out-of-plane mode of vibration to obtain respectively a first electrical signal having a first frequency, and a second electrical signal having a second frequency being less than the first frequency. The first and second electrical signals are mixed to obtain a third electrical signal having a third frequency, where the third frequency is proportional to a temperature of the MEMS resonator. The temperature is determined based on the third frequency. Values of the first and second frequencies can be adjusted based on the determined temperature to compensate for frequency deviations due to temperature deviations. There is also provided methods and systems for determining the temperature of the dual-output MEMS, for compensating the frequency, and a method of manufacturing the dual-output MEMS.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 19, 2022
    Assignee: STATHERA IP HOLDINGS INC.
    Inventors: George Xereas, Vahid Tayari, Ahmed Khorshid, Charles Allan
  • Patent number: 11299717
    Abstract: The invention relates to recombinant microorganisms and methods of producing citronellal, citronellol, citronellic acid, and/or citronellal/citronellol pathway intermediates and precursors.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: April 12, 2022
    Inventors: Thomas Oestergaard Tange, Johannes Haerle, Fanny Delegrange, Julien Denis Vivian De Block, Robert Charles Allan, Philipp Friedrich Berninger, Christophe Folly, Davide Antonio Ravasio, Ludivine Labagnere, Federico Brianza, Curt Aimé Friis Nielsen, Jørgen Hansen, Nora Weber, Samantha Jessica Capewell
  • Publication number: 20210276858
    Abstract: There is provided a dual-output microelectromechanical system (MEMS) resonator. The MEMS resonator can be operated selectively and concurrently in an in-plane mode of vibration and an out-of-plane mode of vibration to obtain respectively a first electrical signal having a first frequency, and a second electrical signal having a second frequency being less than the first frequency. The first and second electrical signals are mixed to obtain a third electrical signal having a third frequency, where the third frequency is proportional to a temperature of the MEMS resonator. The temperature is determined based on the third frequency. Values of the first and second frequencies can be adjusted based on the determined temperature to compensate for frequency deviations due to temperature deviations. There is also provided methods and systems for determining the temperature of the dual-output MEMS, for compensating the frequency, and a method of manufacturing the dual-output MEMS.
    Type: Application
    Filed: June 28, 2019
    Publication date: September 9, 2021
    Inventors: George Xereas, Vahid Tayari, Ahmed Khorshid, Charles Allan
  • Patent number: 11111135
    Abstract: MEMS based sensors, particularly capacitive sensors, potentially can address critical considerations for users including accuracy, repeatability, long-term stability, ease of calibration, resistance to chemical and physical contaminants, size, packaging, and cost effectiveness. Accordingly, it would be beneficial to exploit MEMS processes that allow for manufacturability and integration of resonator elements into cavities within the MEMS sensor that are at low pressure allowing high quality factor resonators and absolute pressure sensors to be implemented. Embodiments of the invention provide capacitive sensors and MEMS elements that can be implemented directly above silicon CMOS electronics.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: September 7, 2021
    Assignee: MY01 IP Holdings Inc.
    Inventors: Vamsy Chodavarapu, Adel Merdassi, Charles Allan
  • Patent number: 10851459
    Abstract: A method of improving polycrystalline silicon growth in a reactor, including: introducing a chlorosilane feed composition comprising trichlorosilane and dichlorosilane into a deposition chamber, wherein the deposition chamber contains a substrate; blending the chlorosilane feed composition with hydrogen gas to form a feed composition; adjusting a baseline flow of chlorosilane and hydrogen gas into the deposition chamber to achieve a pre-determined total flow and a pre-determined chlorosilane feed composition set point; applying pressure to the deposition chamber and energy to the substrate in the deposition chamber to form polycrystalline silicon; measuring the amount of dichlorosilane present in the chlorosilane feed composition and determining an offset value from a target value of dichlorosilane present in the chlorosilane feed composition; adjusting the chlorosilane feed composition set point by an amount inversely proportional to the dichlorosilane offset value; and depositing the formed polycrystalline
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: December 1, 2020
    Assignee: HEMLOCK SEMICONDUCTOR OPERATIONS LLC
    Inventors: John Victor Bucci, Mark Richard Stachowiak, Charles Allan Stibitz
  • Patent number: 10845343
    Abstract: A process is disclosed in which a computing device reads electronic data from an ultrasonic scanning probe and processes that data in real time to determine if any potential weld defects are encountered as the probe head moves along scanning the weld. The method receives weld scan data in the form of scanning slices and determines if any of the encountered indications match a predetermined criterion. The process utilizes a moving scan data window of scan slices and processes each window for indications of weld defects. The processing of the data window is optimized using a rule-based, indications counting set so that any found defect indications triggers the issuance of a signal to an operator, in various forms, such as activating a marking module, issuing an alert signal, or printing a report.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: November 24, 2020
    Assignee: VeriPhase, Inc.
    Inventors: John Mark Davis, Archibald Leach Cobbs, Charles Allan Hansen, Nicholas James Bublitz, Samuel Matthew Davis
  • Publication number: 20200360050
    Abstract: A system for installing a sensor, comprising: a puncture device comprising: a casing defining a cavity; an elongated member a sharp end; and a sensor assembly for measuring data about the body, the sensor assembly comprising: a sensing unit comprising a sensor for measuring the data and being engageable with the elongated member; a data unit for collecting the data, the data collecting unit being receivable within the cavity of the casing; and a communication cable extending between the sensing unit and the data collecting unit for transmitting the data to the data unit; wherein the sensor assembly is removably securable to the puncture device by inserting the data unit in the cavity of the casing and engaging together the sensing unit and the elongated member, the communication cable being tensed when the sensor assembly is secured to the puncture device.
    Type: Application
    Filed: March 14, 2018
    Publication date: November 19, 2020
    Inventors: Edward J. HARVEY, Charles ALLAN, Blake LARIVIERE
  • Patent number: 10641745
    Abstract: A method is disclosed to extract meta-data held in a weld scan data file and from such data determine whether the testing data is acceptable for review. A series of configuration parameters held in the scan data file are analyzed for inconsistencies and a select set of parameters are reviewed for codes and industry accepted standards compliance with recorded scan data. Additional qualitative tests may be implemented on the scan test file and unacceptable results may also provide guidance to the weld inspector as to whether continued review of the scan data file is worthwhile. Such consistency testing avoids wasteful activities reviewing a flawed weld scan data file and provides signals to operators to avoid the processing of such a file by weld scan analysis software when such processing will not result in successful assistance to a weld inspector.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: May 5, 2020
    Assignee: VeriPhase, Inc.
    Inventors: John Mark Davis, Archibald Leach Cobbs, Charles Allan Hansen, Nicholas James Bublitz, Samuel Matthew Davis
  • Patent number: 10636064
    Abstract: A method of monetization of the processing of a collection of ultrasonic data files is disclosed. The process accesses each scan data file and reads meta-data held by that scan data file. Responsive to the extant meta-data, a pricing model is applied, and a processing cost calculated for the processing of each data file. That pricing information is then associated with a customer account and invoiced at a time of choosing of the processing company. Various pricing models may be applied responsive to the characteristics of the data file processed, and responsive to the timeliness and priority of such processing.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: April 28, 2020
    Assignee: VeriPhase, Inc.
    Inventors: John Mark Davis, Archibald Leach Cobbs, Charles Allan Hansen, Nicholas James Bublitz, Samuel Matthew Davis
  • Patent number: D979751
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: February 28, 2023
    Assignee: MY01 IP HOLDINGS INC.
    Inventors: Edward Harvey, Charles Allan, Blake Lariviere, Berk Ilhan
  • Patent number: D1010120
    Type: Grant
    Filed: January 25, 2023
    Date of Patent: January 2, 2024
    Inventors: Edward Harvey, Charles Allan, Blake Lariviere, Berk Ilhan