Patents by Inventor Charles Boecker

Charles Boecker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240004449
    Abstract: A domain control circuit includes a power regulator to supply power for a first domain on a power rail and a sequencing circuit to control the power regulator, and a clock gate signal to activate the domain. The sequencing circuit receives a domain control signal to control activation and deactivation of the domain. The domain control circuit deactivates the clock gate signal to the domain after controlling the power regulator to supply power for the domain on a power rail. In this manner, a voltage droop in a supply voltage on a power rail is reduced. In some examples, the clock gate signal to the domain is deactivated after a voltage increase on the power rail. In some examples, the power regulator includes a plurality of parallel regulator circuits and a regulator control circuit to determine a number of the parallel regulator circuits to be activated to power the domain.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 4, 2024
    Inventors: Charles BOECKER, Eric GROEN, Shaishav A. DESAI
  • Patent number: 11838153
    Abstract: A digital signal processor includes analog to digital converters to convert an analog voltage to digital voltage in unit intervals of an analog signal. A decision feedback equalizer (DFE) determines a first level of a digital sum of a digital voltage in a first UI and digital voltages of adjacent UIs (taps). The DFE identifies predetermined sequences of levels of consecutive UIs that include the first level and selects one of the predetermined sequences to decode digital data encoded in the analog signal in the UI. The DSP may be programmable to include taps from UIs that may affect the first UI. The predetermined sequences may include levels of the digital sums of consecutive UIs of the analog signal. The predetermined sequences may be identified in a look-up table based on the first level.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: December 5, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Md Masum Hossain, Charles Boecker, Michael Raymond Trombley, Simon S. Li, Shaishav A. Desai
  • Patent number: 11791926
    Abstract: A system for interconnecting a plurality of computing nodes includes a plurality of optical circuit switches and a plurality of electrical circuit switches. A first network stage comprises a first plurality of circuit switches selected from among the plurality of optical circuit switches and the plurality of electrical circuit switches. Each computing node among the plurality of computing nodes is optically coupled to at least one of the first plurality of circuit switches. A second network stage comprises a second plurality of circuit switches selected from among the plurality of optical circuit switches and the plurality of electrical circuit switches. Each circuit switch among the first plurality of circuit switches is optically coupled to each circuit switch among the second plurality of optical circuit switches.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: October 17, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Hitesh Ballani, Christian L. Belady, Lisa Ru-Feng Hsu, Winston Allen Saunders, Paolo Costa, Douglas M. Carmean, Kai Shi, Charles Boecker
  • Patent number: 11722140
    Abstract: A phase-locked loop (PLL) circuit generates an analog signal in phase-lock with a reference signal at a reference frequency. The PLL circuit includes a charge pump circuit, a loop filter circuit, a feedback divider, and a voltage controlled oscillator (VCO). The charge pump circuit charges a sample capacitor of the loop filter circuit to a sample voltage based on a phase difference between the generated analog signal and the reference signal. The loop filter circuit stores the sample voltage as a proportional control voltage in a hold capacitor to reduce or avoid ripple in the control voltage that causes jitter in the analog signal. The loop filter circuit also provides the sample voltage to an integral component circuit comprising a comparator and digital accumulator producing an integral control. The VCO generates the analog signal at a frequency based on the proportional control voltage and the integral control voltage.
    Type: Grant
    Filed: December 31, 2021
    Date of Patent: August 8, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ping Lu, Charles Boecker, Bupesh Pandita
  • Patent number: 11705890
    Abstract: Analog calibration (ACAL) circuits supporting iterative measurement of an input signal from a measured circuit, and related methods are disclosed. The ACAL circuit includes a voltage reference generation circuit and a comparator circuit. The voltage reference generation circuit is configured to provide an input reference voltage. The comparator circuit is configured to compare the input reference voltage to an input circuit voltage of a measured circuit and generate a digital measurement signal based on the comparison. To provide for the ACAL circuit to more precisely measure the input circuit voltage, the voltage reference generation circuit is programmable and is configured to a generate the input reference voltage based on a programmed reference voltage selection. In this manner, the ACAL circuit can be used to measure the input circuit voltage in an iterative manner based on different programmed input reference voltages for a more precise measurement of the input circuit voltage.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: July 18, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Anirban Banerjee, Bupesh Pandita, Charles Boecker, Eric Groen
  • Publication number: 20230216509
    Abstract: A phase-locked loop (PLL) circuit generates an analog signal in phase-lock with a reference signal at a reference frequency. The PLL circuit includes a charge pump circuit, a loop filter circuit, a feedback divider, and a voltage controlled oscillator (VCO). The charge pump circuit charges a sample capacitor of the loop filter circuit to a sample voltage based on a phase difference between the generated analog signal and the reference signal. The loop filter circuit stores the sample voltage as a proportional control voltage in a hold capacitor to reduce or avoid ripple in the control voltage that causes jitter in the analog signal. The loop filter circuit also provides the sample voltage to an integral component circuit comprising a comparator and digital accumulator producing an integral control. The VCO generates the analog signal at a frequency based on the proportional control voltage and the integral control voltage.
    Type: Application
    Filed: December 31, 2021
    Publication date: July 6, 2023
    Inventors: Ping LU, Charles BOECKER, Bupesh PANDITA
  • Publication number: 20230125673
    Abstract: A system for interconnecting a plurality of computing nodes includes a plurality of optical circuit switches and a plurality of electrical circuit switches. A first network stage comprises a first plurality of circuit switches selected from among the plurality of optical circuit switches and the plurality of electrical circuit switches. Each computing node among the plurality of computing nodes is optically coupled to at least one of the first plurality of circuit switches. A second network stage comprises a second plurality of circuit switches selected from among the plurality of optical circuit switches and the plurality of electrical circuit switches. Each circuit switch among the first plurality of circuit switches is optically coupled to each circuit switch among the second plurality of optical circuit switches.
    Type: Application
    Filed: December 22, 2022
    Publication date: April 27, 2023
    Inventors: Hitesh BALLANI, Christian L. BELADY, Lisa Ru-Feng HSU, Winston Allen SAUNDERS, Paolo COSTA, Douglas M. CARMEAN, Kai SHI, Charles BOECKER
  • Publication number: 20230060647
    Abstract: Analog calibration (ACAL) circuits supporting iterative measurement of an input signal from a measured circuit, and related methods are disclosed. The ACAL circuit includes a voltage reference generation circuit and a comparator circuit. The voltage reference generation circuit is configured to provide an input reference voltage. The comparator circuit is configured to compare the input reference voltage to an input circuit voltage of a measured circuit and generate a digital measurement signal based on the comparison. To provide for the ACAL circuit to more precisely measure the input circuit voltage, the voltage reference generation circuit is programmable and is configured to a generate the input reference voltage based on a programmed reference voltage selection. In this manner, the ACAL circuit can be used to measure the input circuit voltage in an iterative manner based on different programmed input reference voltages for a more precise measurement of the input circuit voltage.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Anirban BANERJEE, Bupesh PANDITA, Charles BOECKER, Eric GROEN
  • Patent number: 11539453
    Abstract: A system for interconnecting a plurality of computing nodes includes a plurality of optical circuit switches and a plurality of electrical circuit switches. A first network stage comprises a first plurality of circuit switches selected from among the plurality of optical circuit switches and the plurality of electrical circuit switches. Each computing node among the plurality of computing nodes is optically coupled to at least one of the first plurality of circuit switches. A second network stage comprises a second plurality of circuit switches selected from among the plurality of optical circuit switches and the plurality of electrical circuit switches. Each circuit switch among the first plurality of circuit switches is optically coupled to each circuit switch among the second plurality of optical circuit switches.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: December 27, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Hitesh Ballani, Christian L. Belady, Lisa Ru-Feng Hsu, Winston Allen Saunders, Paolo Costa, Douglas M. Carmean, Kai Shi, Charles Boecker
  • Publication number: 20220140934
    Abstract: A system for interconnecting a plurality of computing nodes includes a plurality of optical circuit switches and a plurality of electrical circuit switches. A first network stage comprises a first plurality of circuit switches selected from among the plurality of optical circuit switches and the plurality of electrical circuit switches. Each computing node among the plurality of computing nodes is optically coupled to at least one of the first plurality of circuit switches. A second network stage comprises a second plurality of circuit switches selected from among the plurality of optical circuit switches and the plurality of electrical circuit switches. Each circuit switch among the first plurality of circuit switches is optically coupled to each circuit switch among the second plurality of optical circuit switches.
    Type: Application
    Filed: February 10, 2021
    Publication date: May 5, 2022
    Inventors: Hitesh BALLANI, Christian L. BELADY, Lisa Ru-Feng HSU, Winston Allen SAUNDERS, Paolo COSTA, Douglas M. CARMEAN, Kai SHI, Charles BOECKER
  • Patent number: 8135037
    Abstract: The present disclosure is generally directed to a method and apparatus to communicate data between two or more semiconductor devices. In an embodiment, a method includes synchronizing a master device with a slave device, where the master device includes a semiconductor device. Synchronizing includes transmitting a first synchronization marker data pattern via a first serial interface from the master device at a first time, and receiving a second synchronization marker data pattern via a second serial interface at the master device at a second time in response to transmitting the first synchronization marker data pattern. Synchronizing also includes determining, based at least in part on the first time and the second time, a third time when a reply is to be received by the master device in response to a request transmitted from the master device to the slave device.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: March 13, 2012
    Assignee: MoSys, Inc.
    Inventors: Charles Boecker, Scott Irwin, Matthew Shafer, Eric Groen, Aaron Hoelscher, Andrew Jenkins, David Black
  • Publication number: 20090316728
    Abstract: The present disclosure is generally directed to a method and apparatus to communicate data between two or more semiconductor devices. In an embodiment, a method includes synchronizing a master device with a slave device, where the master device includes a semiconductor device. Synchronizing includes transmitting a first synchronization marker data pattern via a first serial interface from the master device at a first time, and receiving a second synchronization marker data pattern via a second serial interface at the master device at a second time in response to transmitting the first synchronization marker data pattern. Synchronizing also includes determining, based at least in part on the first time and the second time, a third time when a reply is to be received by the master device in response to a request transmitted from the master device to the slave device.
    Type: Application
    Filed: August 26, 2009
    Publication date: December 24, 2009
    Applicant: MagnaLynx, Inc.
    Inventors: Charles Boecker, Scott Irwin, Matthew Shafer, Eric Groen, Aaron Hoelscher, Andrew Jenkins, David Black
  • Patent number: 7599396
    Abstract: The present disclosure is generally directed to a method of communicating data between two or more semiconductor devices. Serial interfaces using the method have a reduction in latency compared to conventional serial interfaces. The method enables features needed for a serial interface, such as limited run lengths and recognizable data boundaries to establish alignment. In addition, a method for synchronizing two or more semiconductor devices through serial interfaces has been presented. This is done by passing a marker data pattern through the system.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: October 6, 2009
    Assignee: Magnalynx, Inc.
    Inventors: Charles Boecker, Scott Irwin, Matthew Shafer, Eric Groen, Aaron Hoelscher, Andrew Jenkins, David Black
  • Patent number: 7167410
    Abstract: A memory device and system are disclosed that may include a serial data interface, a serial address interface, and a reference clock interface. The reference clock interface is configured to receive a signal from a reference clock source that provides a reference clock signal to a memory control device. The serial interfaces are coupled to other memory devices or memory control devices. A method of transferring data within a memory system using serial interfaces is also disclosed. The method includes performing clock multiplication on a reference clock to provide a multiplied clock, using the multiplied clock to serialize and transmit data onto a serial interface, recovering data from the seal interface, using the reference clock to determine an initial frequency for use by clock and data recovery module, using the data recovered from the serial interface to determine a phase and final frequency of a recovered clock, and using the recovered clock to de-serialize received serial data into parallel data words.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: January 23, 2007
    Assignee: Magnalynx
    Inventors: Charles Boecker, Scott Irwin, Matthew Shafer, Eric Groen, Aaron Hoelscher, Andrew Jenkins, David Black
  • Publication number: 20070008992
    Abstract: The present disclosure is generally directed to a method of communicating data between two or more semiconductor devices. Serial interfaces using the method have a reduction in latency compared to conventional serial interfaces. The method enables features needed for a serial interface, such as limited run lengths and recognizable data boundaries to establish alignment. In addition, a method for synchronizing two or more semiconductor devices through serial interfaces has been presented. This is done by passing a marker data pattern through the system.
    Type: Application
    Filed: July 11, 2005
    Publication date: January 11, 2007
    Applicant: MagnaLynx, Inc.
    Inventors: Charles Boecker, Scott Irwin, Matthew Shafer, Eric Groen, Aaron Hoelscher, Andrew Jenkins, David Black
  • Publication number: 20060252397
    Abstract: Adjustment circuitry in a phase-locked loop (PLL) adjusts a sampling point to any desired location within a bit period of each bit of received high-speed serial data. The adjustment circuitry, responsive to program control, selectively adds current portions to a charge pump error current output thereby adjusting a feedback signal frequency to shift the serial data sampling point. A plurality of current mirror devices is scaled, with respect to a reference current device, to provide ?I current portions. A current control module controls the current portions magnitude and a sign of the current portions. The adjustment circuitry further controls charge pump programmable current sources in order to set a desired operating point of the PLL. The programmable current sources are controlled by a bias voltage and a plurality of selectable serial and parallel coupled resistors.
    Type: Application
    Filed: July 6, 2006
    Publication date: November 9, 2006
    Applicant: Xilinx, Inc.
    Inventors: Charles Boecker, Brian Brunn
  • Publication number: 20060239107
    Abstract: A memory device and system are disclosed that may include a serial data interface, a serial address interface, and a reference clock interface. The reference clock interface is configured to receive a signal from a reference clock source that provides a reference clock signal to a memory control device. The serial interfaces are coupled to other memory devices or memory control devices. A method of transferring data within a memory system using serial interfaces is also disclosed. The method includes performing clock multiplication on a reference clock to provide a multiplied clock, using the multiplied clock to serialize and transmit data onto a serial interface, recovering data from the seal interface, using the reference clock to determine an initial frequency for use by clock and data recovery module, using the data recovered from the serial interface to determine a phase and final frequency of a recovered clock, and using the recovered clock to de-serialize received serial data into parallel data words.
    Type: Application
    Filed: April 26, 2005
    Publication date: October 26, 2006
    Applicant: MagnaLynx, Inc.
    Inventors: Charles Boecker, Scott Irwin, Matthew Shafer, Eric Groen, Aaron Hoelscher, Andrew Jenkins, David Black
  • Publication number: 20060006901
    Abstract: A Transmit line driver with selectable pre-emphasis and driver signal magnitudes comprises a primary current driver for setting a primary current level and a pre-emphasis current driver that provides an additional amount of current that is superimposed with or added to the primary current level produced by the primary current driver. The pre-emphasis current has either negative or positive magnitude based upon a pre-emphasis signal logic state. A first current selection module defines a reference signal that is used to select the primary current driver output signal magnitude in a first current mirror, while a second current selection module is used to define a second reference signal that selects a pre-emphasis current driver signal magnitude in a second current mirror. Logic generates a binary signal to both the first and second current selection modules to select the current levels as well as the pre-emphasis signal.
    Type: Application
    Filed: September 1, 2005
    Publication date: January 12, 2006
    Applicant: Xilinx, Inc.
    Inventors: Eric Groen, Charles Boecker, William Black
  • Publication number: 20050057280
    Abstract: A Transmit line driver with selectable pre-emphasis and driver signal magnitudes comprises a primary current driver for setting a primary current level and a pre-emphasis current driver that provides an additional amount of current that is superimposed with or added to the primary current level produced by the primary current driver. The pre-emphasis current has either negative or positive magnitude based upon a pre-emphasis signal logic state. A first current selection module defines a reference signal that is used to select the primary current driver output signal magnitude in a first current mirror, while a second current selection module is used to define a second reference signal that selects a pre-emphasis current driver signal magnitude in a second current mirror. Logic generates a binary signal to both the first and second current selection modules to select the current levels as well as the pre-emphasis signal.
    Type: Application
    Filed: September 11, 2003
    Publication date: March 17, 2005
    Applicant: Xilinx, Inc.
    Inventors: Eric Groen, Charles Boecker, William Black
  • Publication number: 20050058222
    Abstract: An analog front-end having built-in equalization includes a control module and a tunable gain stage. The control module is operably coupled to provide a frequency response setting based on a channel response of a channel providing high-speed serial data to the analog front-end. The tunable gain stage includes a frequency dependent load and an amplifier input section. The frequency dependent load is adjusted based on the frequency response setting. The amplifier input section is operably coupled to the frequency dependent load and receives the high-speed serial data. In conjunction with the frequency dependent load, the amplifier input section amplifies and equalizes the high-speed serial data to produce an amplified and equalized serial data.
    Type: Application
    Filed: September 11, 2003
    Publication date: March 17, 2005
    Applicant: Xilinx, Inc.
    Inventors: William Black, Charles Boecker, Eric Groen