Patents by Inventor Charles Burton Theurer

Charles Burton Theurer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10675765
    Abstract: Systems and methods are provided for an automation system. The systems and methods calculate a motion trajectory of a manipulator and an end-effector. The end-effector is configured to grasp a target object. The motion trajectory defines successive positions of the manipulator and the end-effector along a plurality of via-points toward the target object. The systems and methods further acquire force/torque (F/T) data from an F/T sensor associated with the end-effector, and adjusts the motion trajectory based on the F/T data.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: June 9, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Huan Tan, John Michael Lizzi, Douglas Forman, Charles Burton Theurer, Omar Al Assad, Romano Patrick, Balajee Kannan, Yonatan Gefen
  • Publication number: 20200158091
    Abstract: A system and method for inspecting, repairing and upgrading wind turbine rotor blades of a wind turbine. The system including deploying one or more cables via an unmanned aerial vehicle (UAV), a balloon, a ballistic mechanism or a catapult to position the one or more cables in draping engagement with a portion of the wind turbine. A climbing robot is positioned to ascend the one or more cables and perform a task related to inspecting for indications, repair of indications or upgrading the rotor blade. A slave robot system, disposed at the base location and anchored to the one or more cables, provides modulation of the cables for positioning of the climbing robot relative to the wind turbine as it ascends and descends the one or more cables. After completion of the task, the climbing robot descends the one or more cables and the cables are removed from the wind turbine.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Shiraj Sen, Todd William Danko, John Robert Hoare, Charles Burton Theurer, Douglas Forman, Judith Ann Guzzo
  • Publication number: 20200158094
    Abstract: A method including positioning a modular robotic component proximate an area of interest on a surface of a wind turbine. The modular robotic component including a plurality of modules that perform a plurality of tasks. The method further including inspecting the area of interest with the modular robotic component for an indication requiring at least one of repair or upgrade and operating the modular robotic component to perform the plurality of tasks sequentially as the modular robotic component moves along the surface of the wind turbine. A modular robotic component and system including the modular robotic component are disclosed.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Todd William Danko, Shiraj Sen, John Robert Hoare, Charles Burton Theurer, Douglas Forman, Judith Ann Guzzo
  • Patent number: 10618168
    Abstract: A robotic system includes a processing system comprising at least one processor. The processor generates a plan to monitor the asset. The plan comprises one or more tasks to be performed by the at least one robot. The processor receives sensor data from at least one sensor indicating one or more characteristics of the asset. The processor adjusts the plan to monitor the asset by adjusting or adding one or more tasks to the plan based on one or both of the quality of the acquired data or a potential defect of the asset. The adjusted plan causes the at least one robot to acquire additional data related to the asset when executed.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 14, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Eric Michael Gros, Huan Tan, Mauricio Castillo-Effen, Charles Burton Theurer
  • Publication number: 20200094411
    Abstract: A system includes a first robotic machine having a first set of capabilities for interacting with a target object; a second robotic machine having a second set of capabilities for interacting with the target object; and a task manager that can determine capability requirements to perform a task on the target object. The task has an associated series of sub-tasks. The task manager can assign a first sequence of sub-tasks for performance by the first robotic machine based on the first set of capabilities and a second sequence of sub-tasks for performance by the second robotic machine based on the second set of capabilities. The first and second robotic machines can coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 26, 2020
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Patent number: 10542382
    Abstract: Methods, apparatus, systems and articles of manufacture are disclosed to facilitate proximity detection and location tracking. An example method includes receiving messages collected by a badge in an environment, the messages including signal strength and a timestamp. The example method also includes assigning a location in the environment to the badge based on a first subset of the messages. The example method also includes identifying an asset in a second subset of the messages. The example method also includes updating a current location associated with the asset based on a relative proximity of the asset to the badge, wherein the current location corresponds to a first time and the updated location corresponds to a second time, and wherein a change in location between the current location and the updated location indicates movement of the asset in the environment.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: January 21, 2020
    Assignee: General Electric Company
    Inventors: Brandon Stephen Good, Charles Burton Theurer, Shaopeng Liu, Robert Lee Wallace
  • Patent number: 10518411
    Abstract: A method includes receiving, via at least one sensor of a robot, sensor data indicating one or more characteristics of an asset. The method includes detecting, based on the sensor data, an existing or imminent defect of the asset. The method includes fabricating a part suitable for use in correcting the defect. The structure of the part is derived using one or both of a digital representation of the asset generated using the sensor data or stored reference data related to the asset.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: December 31, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Charles Robert Gilman, Mauricio Castillo-Effen, Charles Burton Theurer
  • Patent number: 10493629
    Abstract: A robotic system includes one or more optical sensors configured to separately obtain two dimensional (2D) image data and three dimensional (3D) image data of a brake lever of a vehicle, a manipulator arm configured to grasp the brake lever of the vehicle, and a controller configured to compare the 2D image data with the 3D image data to identify one or more of a location or a pose of the brake lever of the vehicle. The controller is configured to control the manipulator arm to move toward, grasp, and actuate the brake lever of the vehicle based on the one or more of the location or the pose of the brake lever.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: December 3, 2019
    Assignee: GE GLOBAL SOURCING LLC
    Inventors: Arpit Jain, Charles Burton Theurer, Balajee Kannan, Shiraj Sen, Pramod Sharma, Shuai Li, Shubao Liu
  • Publication number: 20190263430
    Abstract: A system and method includes determining, with a sensor assembly disposed onboard a first aerial vehicle, a direction in which a fluid flows within or through the first aerial vehicle, and determining an orientation of the first aerial vehicle relative to a second aerial vehicle based at least in part on the direction in which the fluid flows within or through the first aerial vehicle.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Inventors: Eugene Smith, Ajith Kuttannair Kumar, Wolfgang Daum, Martin Paget, Daniel Rush, Sameh Fahmy, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffret James Kisak, Dale Martin DiDomenico, Suresh Govindappa, Manibabu Pippalla, Sethu Madhavan, Jared Klineman Cooper, Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick, Brad Thomas Costa, James D. Brooks, Micahel Scott Miner, Harry Kirk Matthews, JR., Bradford Wayne Miller, Neeraja Subrahmaniyan, Brian Joseph McManus, Frank Wawrzyniak, Ralph C. Haddock, III, Robert James Foy, James Glen Corry, Steven Andrew Kellner, Joseph Mario Nazareth, Brian William Schroeck, Shawn Arthur McClintic
  • Publication number: 20190232498
    Abstract: A system includes a first robotic machine having a first set of capabilities for interacting with a target object on stationary equipment; a second robotic machine having a second set of capabilities for interacting with the target object; and a task manager that can determine capability requirements to perform a task on the target object. The task has an associated series of sub-tasks. The task manager can assign a first sequence of sub-tasks for performance by the first robotic machine based on the first set of capabilities and a second sequence of sub-tasks for performance by the second robotic machine based on the second set of capabilities. The first and second robotic machines can coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Publication number: 20190193275
    Abstract: Systems and methods are provided for an automation system. The systems and methods calculate a motion trajectory of a manipulator and an end-effector. The end-effector is configured to grasp a target object. The motion trajectory defines successive positions of the manipulator and the end-effector along a plurality of via-points toward the target object. The systems and methods further acquire force/torque (F/T) data from an F/T sensor associated with the end-effector, and adjusts the motion trajectory based on the F/T data.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: Huan Tan, John Michael Lizzi, Douglas Forman, Charles Burton Theurer, Omar Al Assad, Romano Patrick, Balajee Kannan, Yonatan Gefen
  • Patent number: 10300601
    Abstract: A locomotive control system may include first and second robotic machines and a task manager. The first and second robotic machines have respective first and second sets of capabilities for interacting with a surrounding environment. The task manager selects the first and second robotic machines from a group to perform a task based on the first and second sets of capabilities of the robotic machines. The task involves manipulating and/or inspecting a target object of a vehicle. The task manager assigns a first sequence of sub-tasks to be performed by the first robotic machine and a second sequence of sub-tasks to be performed by the second robotic machine. The first and second robotic machines are configured to coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: May 28, 2019
    Assignee: GE GLOBAL SOURCING LLC
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Publication number: 20190146462
    Abstract: The present approach relates to streaming data derived from inspection data acquired using one or more robots performing inspections of an asset or assets. Such inspections may be fully or partially automated, such as being controlled by one or more computer-based routines, and may be planned or dynamically altered in response to inputs or requirements associated with an end-user of the inspection data, such as a subscriber to the data in a publication/subscription distribution scheme. Thus, an inspection may be planned or altered based on the data needs or subscription levels of the user or customers.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 16, 2019
    Inventors: Huan Tan, Li Zhang, Romano Patrick, Viktor Holovashchenko, Charles Burton Theurer, John Michael Lizzi, JR., Arpit Jain, Shiraj Sen, Todd William Danko, Kori U. MacDonald
  • Publication number: 20190134821
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 9, 2019
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Publication number: 20190137995
    Abstract: An asset inspection system includes a robot and a server. The server receives a request for data from the robot, wherein the requested data comprises an algorithm, locates the requested data in a database stored on the server, encrypts the requested data, and transmits the requested data to the robot. The robot is configured to collect inspection data corresponding to an asset based at least in part on the requested data and transmit the collected inspection data to the server.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 9, 2019
    Inventors: Huan Tan, Li Zhang, Romano Patrick, Viktor Holovashchenko, Charles Burton Theurer, John Michael Lizzi, JR.
  • Patent number: 10272573
    Abstract: Systems and methods are provided for an automation system. The systems and methods calculate a motion trajectory of a manipulator and an end-effector. The end-effector is configured to grasp a target object. The motion trajectory defines successive positions of the manipulator and the end-effector along a plurality of via-points toward the target object. The systems and methods further acquire force/torque (F/T) data from an F/T sensor associated with the end-effector, and adjusts the motion trajectory based on the F/T data.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: April 30, 2019
    Assignee: GE GLOBAL SOURCING LLC
    Inventors: Huan Tan, John Michael Lizzi, Douglas Forman, Charles Burton Theurer, Omar Al Assad, Romano Patrick, Balajee Kannan, Yonatan Gefen
  • Publication number: 20190082298
    Abstract: Methods, apparatus, systems and articles of manufacture are disclosed to facilitate proximity detection and location tracking. An example method includes receiving messages collected by a badge in an environment, the messages including signal strength and a timestamp. The example method also includes assigning a location in the environment to the badge based on a first subset of the messages. The example method also includes identifying an asset in a second subset of the messages. The example method also includes updating a current location associated with the asset based on a relative proximity of the asset to the badge, wherein the current location corresponds to a first time and the updated location corresponds to a second time, and wherein a change in location between the current location and the updated location indicates movement of the asset in the environment.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 14, 2019
    Inventors: Brandon Stephen Good, Charles Burton Theurer, Shaopeng Liu, Robert Lee Wallace
  • Publication number: 20180361586
    Abstract: A locomotive control system may include first and second robotic machines and a task manager. The first and second robotic machines have respective first and second sets of capabilities for interacting with a surrounding environment. The task manager selects the first and second robotic machines from a group to perform a task based on the first and second sets of capabilities of the robotic machines. The task involves manipulating and/or inspecting a target object of a vehicle. The task manager assigns a first sequence of sub-tasks to be performed by the first robotic machine and a second sequence of sub-tasks to be performed by the second robotic machine. The first and second robotic machines are configured to coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Application
    Filed: August 28, 2018
    Publication date: December 20, 2018
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Patent number: 10065317
    Abstract: A system includes first and second robotic machines and a task manager. The first and second robotic machines have respective first and second sets of capabilities for interacting with a surrounding environment. The task manager selects the first and second robotic machines from a group to perform a task based on the first and second sets of capabilities of the robotic machines. The task involves manipulating and/or inspecting a target object of a vehicle. The task manager assigns a first sequence of sub-tasks to be performed by the first robotic machine and a second sequence of sub-tasks to be performed by the second robotic machine. The first and second robotic machines are configured to coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: September 4, 2018
    Assignee: General Electric Company
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Patent number: 10068116
    Abstract: Methods, apparatus, systems and articles of manufacture are disclosed to facilitate proximity detection and location tracking. An example method includes receiving messages collected by a badge in an environment, the messages including signal strength and a timestamp. The example method also includes assigning a location in the environment to the badge based on a first subset of the messages. The example method also includes identifying an asset in a second subset of the messages. The example method also includes updating a current location associated with the asset based on a relative proximity of the asset to the badge, wherein the current location corresponds to a first time and the updated location corresponds to a second time, and wherein a change in location between the current location and the updated location indicates movement of the asset in the environment.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: September 4, 2018
    Assignee: General Electric Company
    Inventors: Brandon Stephen Good, Charles Burton Theurer, Shaopeng Liu, Robert Lee Wallace