Patents by Inventor Charles Chew-Yuen Young

Charles Chew-Yuen Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11616067
    Abstract: In an embodiment, a method (of manufacturing fins for a semiconductor device) includes: forming a first layer (on a semiconductor substrate) that has first spacers and etch stop layer (ESL) portions which are interspersed; forming second spacers on central regions of the first spacers and the ESL portions; removing exposed regions of the first spacers and the ESL portions and corresponding underlying portions of the semiconductor substrate; removing the second spacers resulting in corresponding first capped semiconductor fins and second capped semiconductor fins that are organized into first and second sets; each member of the first set having a first cap with a first etch sensitivity; and each member of the second set having a second cap with a different second etch sensitivity; and eliminating selected ones of the first capped semiconductor fins and selected ones of the second capped semiconductor fins.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: March 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Liang Chen, Chih-Ming Lai, Charles Chew-Yuen Young, Chin-Yuan Tseng, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Wei-Liang Lin, L. C. Chou
  • Publication number: 20230091869
    Abstract: The present disclosure describes various non-planar semiconductor devices, such as fin field-effect transistors (finFETs) to provide an example, having one or more metal rail conductors and various methods for fabricating these non-planar semiconductor devices. In some situations, the one or more metal rail conductors can be electrically connected to gate, source, and/or drain regions of these various non-planar semiconductor devices. In these situations, the one or more metal rail conductors can be utilized to electrically connect the gate, the source, and/or the drain regions of various non-planar semiconductor devices to other gate, source, and/or drain regions of various non-planar semiconductor devices and/or other semiconductor devices. However, in other situations, the one or more metal rail conductors can be isolated from the gate, the source, and/or the drain regions these various non-planar semiconductor devices.
    Type: Application
    Filed: November 7, 2022
    Publication date: March 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Liang CHEN, Chih-Ming LAI, Ching-Wei TSAI, Charles Chew-Yuen YOUNG, Jiann-Tyng TZENG, Kuo-Cheng CHIANG, Ru-Gun LIU, Wei-Hao WU, Yi-Hsiung LIN, Chia-Hao CHANG, Lei-Chun CHOU
  • Patent number: 11600729
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a semiconductor substrate having a first semiconductor material layer separated from a second semiconductor material layer by an insulating layer. A source region and a drain region are disposed in the first semiconductor material layer and spaced apart. A gate electrode is disposed over the first semiconductor material layer between the source region and the drain region. A first doped region having a first doping type is disposed in the second semiconductor material layer, where the gate electrode directly overlies the first doped region. A second doped region having a second doping type different than the first doping type is disposed in the second semiconductor material layer, where the second doped region extends beneath the first doped region and contacts opposing sides of the first doped region.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: March 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jack Liu, Charles Chew-Yuen Young
  • Patent number: 11581300
    Abstract: A method is disclosed, including the following operations: arranging a first gate structure extending continuously above a first active region and a second active region of a substrate; arranging a first separation spacer disposed on the first gate structure to isolate an electronic signal transmitted through a first gate via and a second gate via that are disposed on the first gate structure, in which the first gate via and the second gate via are arranged above the first active region and the second active region respectively; and arranging a first local interconnect between the first active region and the second active region, in which the first local interconnect is electrically coupled to a first contact disposed on the first active region and a second contact disposed on the second active region.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: February 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Charles Chew-Yuen Young, Chih-Liang Chen, Chih-Ming Lai, Jiann-Tyng Tzeng, Shun-Li Chen, Kam-Tou Sio, Shih-Wei Peng, Chun-Kuang Chen, Ru-Gun Liu
  • Patent number: 11532751
    Abstract: The present disclosure describes various non-planar semiconductor devices, such as fin field-effect transistors (finFETs) to provide an example, having one or more metal rail conductors and various methods for fabricating these non-planar semiconductor devices. In some situations, the one or more metal rail conductors can be electrically connected to gate, source, and/or drain regions of these various non-planar semiconductor devices. In these situations, the one or more metal rail conductors can be utilized to electrically connect the gate, the source, and/or the drain regions of various non-planar semiconductor devices to other gate, source, and/or drain regions of various non-planar semiconductor devices and/or other semiconductor devices. However, in other situations, the one or more metal rail conductors can be isolated from the gate, the source, and/or the drain regions these various non-planar semiconductor devices.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Liang Chen, Charles Chew-Yuen Young, Hui-Ting Yang, Jiann-Tyng Tzeng, Kam-Tou Sio, Shih-Wei Peng, Wei-Cheng Lin, Lei-Chun Chou
  • Patent number: 11532482
    Abstract: A method of manufacturing a semiconductor device includes depositing a first material on a substrate, depositing on the substrate a second material that has an etch selectivity different from an etch selectively of the first material, depositing a spacer material on the first and second material, and etching the substrate using the spacer material as an etch mask to form a fin under the first material and a fin under the second material.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Lei-Chun Chou, Chih-Liang Chen, Chih-Ming Lai, Charles Chew-Yuen Young, Chin-Yuan Tseng, Hsin-Chih Chen, Shi Ning Ju, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Wei-Cheng Lin, Wei-Liang Lin
  • Patent number: 11532553
    Abstract: A semiconductor structure is disclosed that includes a first conductive line, a first conductive segment, a second conductive segment, and a gate. The first conductive segment is electrically coupled to the first conductive line through a conductive via. The second conductive segment is configured to electrically couple the first conductive segment with a third conductive segment disposed over an active area. The gate is disposed under the second conductive segment and disposed between first conductive segment and the third conductive segment. The first conductive line and the second conductive segment are disposed at two sides of the conductive via respectively. A length of the first conductive segment is greater than a length of the third conductive segment.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Hung Shen, Chih-Liang Chen, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio, Wei-Cheng Lin
  • Publication number: 20220367240
    Abstract: A semiconductor device includes a buried metal line disposed in a semiconductor substrate, a first dielectric material on a first sidewall of the buried metal line and a second dielectric material on a second sidewall of the buried metal line, a first multiple fins disposed proximate the first sidewall of the buried metal line, a second multiple fins disposed proximate the second sidewall of the buried metal line, a first metal gate structure over the first multiple fins and over the buried metal line, wherein the first metal gate structure extends through the first dielectric material to contact the buried metal line, and a second metal gate structure over the second multiple fins and over the buried metal line.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 17, 2022
    Inventors: Lei-Chun Chou, Chih-Liang Chen, Jiann-Tyng Tzeng, Chih-Ming Lai, Ru-Gun Liu, Charles Chew-Yuen Young
  • Patent number: 11495687
    Abstract: The present disclosure describes various non-planar semiconductor devices, such as fin field-effect transistors (finFETs) to provide an example, having one or more metal rail conductors and various methods for fabricating these non-planar semiconductor devices. In some situations, the one or more metal rail conductors can be electrically connected to gate, source, and/or drain regions of these various non-planar semiconductor devices. In these situations, the one or more metal rail conductors can be utilized to electrically connect the gate, the source, and/or the drain regions of various non-planar semiconductor devices to other gate, source, and/or drain regions of various non-planar semiconductor devices and/or other semiconductor devices. However, in other situations, the one or more metal rail conductors can be isolated from the gate, the source, and/or the drain regions these various non-planar semiconductor devices.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: November 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Liang Chen, Chih-Ming Lai, Ching-Wei Tsai, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kuo-Cheng Chiang, Ru-Gun Liu, Wei-Hao Wu, Yi-Hsiung Lin, Chia-Hao Chang, Lei-Chun Chou
  • Patent number: 11495497
    Abstract: An embodiment of a semiconductor switch structure includes source contacts, drain contacts, gates and fins. The contacts and gates are elongated in a first direction and are spaced apart from each other in a second direction perpendicular to the first direction. The gates are interspersed between the contacts. The fins underlie both the contacts and the gates. The fins are elongated in the second direction and are spaced apart from each other in the first direction. A contact via extends through one of the contacts without contacting a gate or a fin. A gate via extends through one of the gates without contacting a contact or a fin. A contact-gate via is in contact with both a contact and a gate but not a fin.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: November 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kam-Tou Sio, Chih-Liang Chen, Charles Chew-Yuen Young, Ho Che Yu
  • Patent number: 11424154
    Abstract: A semiconductor device includes a buried metal line disposed in a semiconductor substrate, a first dielectric material on a first sidewall of the buried metal line and a second dielectric material on a second sidewall of the buried metal line, a first multiple fins disposed proximate the first sidewall of the buried metal line, a second multiple fins disposed proximate the second sidewall of the buried metal line, a first metal gate structure over the first multiple fins and over the buried metal line, wherein the first metal gate structure extends through the first dielectric material to contact the buried metal line, and a second metal gate structure over the second multiple fins and over the buried metal line.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: August 23, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lei-Chun Chou, Chih-Liang Chen, Jiann-Tyng Tzeng, Chih-Ming Lai, Ru-Gun Liu, Charles Chew-Yuen Young
  • Publication number: 20220262857
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a semiconductor substrate having a first semiconductor material layer separated from a second semiconductor material layer by an insulating layer. A first access transistor is arranged on the first semiconductor material layer, where the first access transistor has a pair of first source/drain regions having a first doping type. A second access transistor is arranged on the first semiconductor material layer, where the second access transistor has a pair of second source/drain regions having a second doping type opposite the first doping type. A resistive memory cell having a bottom electrode and an upper electrode is disposed over the semiconductor substrate, where one of the first source/drain regions and one of the second source/drain regions are electrically coupled to the bottom electrode.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Jack Liu, Charles Chew-Yuen Young
  • Patent number: 11329101
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a semiconductor substrate having a first semiconductor material layer separated from a second semiconductor material layer by an insulating layer. A first access transistor is arranged on the first semiconductor material layer, where the first access transistor has a pair of first source/drain regions having a first doping type. A second access transistor is arranged on the first semiconductor material layer, where the second access transistor has a pair of second source/drain regions having a second doping type opposite the first doping type. A resistive memory cell having a bottom electrode and an upper electrode is disposed over the semiconductor substrate, where one of the first source/drain regions and one of the second source/drain regions are electrically coupled to the bottom electrode.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: May 10, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jack Liu, Charles Chew-Yuen Young
  • Publication number: 20220108990
    Abstract: In an embodiment, a method (of manufacturing fins for a semiconductor device) includes: forming a first layer (on a semiconductor substrate) that has first spacers and etch stop layer (ESL) portions which are interspersed; forming second spacers on central regions of the first spacers and the ESL portions; removing exposed regions of the first spacers and the ESL portions and corresponding underlying portions of the semiconductor substrate; removing the second spacers resulting in corresponding first capped semiconductor fins and second capped semiconductor fins that are organized into first and second sets; each member of the first set having a first cap with a first etch sensitivity; and each member of the second set having a second cap with a different second etch sensitivity; and eliminating selected ones of the first capped semiconductor fins and selected ones of the second capped semiconductor fins.
    Type: Application
    Filed: December 16, 2021
    Publication date: April 7, 2022
    Inventors: Chih-Liang CHEN, Chih-Ming LAI, Charles Chew-Yuen YOUNG, Chin-Yuan TSENG, Jiann-Tyng TZENG, Kam-Tou SIO, Ru-Gun LIU, Wei-Liang LIN, L. C. CHOU
  • Publication number: 20220068342
    Abstract: Some embodiments of the present disclosure relate to a memory device. The memory device includes an active current path including a data storage element; and a reference current path including a reference resistance element. The reference resistance element has a resistance that differs from a resistance of the data storage element. A delay-sensing element has a first input coupled to the active current path and a second input coupled to the reference current path. The delay-sensing element is configured to sense a timing delay between a first signal on the active current path and a second signal on the reference current path. The delay-sensing element is further configured to determine a data state stored in the data storage element based on the timing delay.
    Type: Application
    Filed: November 11, 2021
    Publication date: March 3, 2022
    Inventors: Jack Liu, Charles Chew-Yuen Young
  • Patent number: 11222899
    Abstract: A semiconductor device including fins arranged so that: in a situation in which any given first one of the fins (first given fin) is immediately adjacent any given second one of the fins (second given fin), and subject to fabrication tolerance, there is a minimum gap, Gmin, between the first and second given fins; and the first and second given fins a minimum pitch, Pmin, that falls in a range as follows: (Gmin+(?90%)*T1)?Pmin?(Gmin+(?110%)*T1).
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: January 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Liang Chen, Chih-Ming Lai, Charles Chew-Yuen Young, Chin-Yuan Tseng, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Wei-Liang Lin, L. C. Chou
  • Publication number: 20210398903
    Abstract: A semiconductor device or structure includes a first pattern metal layer disposed between a first supply metal tract and a second supply metal tract, the first pattern metal layer comprising an internal route and a power route. A follow pin couples the first supply metal to the power route. The first supply metal tract comprises a first metal and a follow pin comprises a second metal.
    Type: Application
    Filed: September 1, 2021
    Publication date: December 23, 2021
    Inventors: Shih-Wei Peng, Chih-Liang Chen, Charles Chew-Yuen Young, Hui-Ting Yang, Jiann-Tyng Tzeng, Wei-Cheng Lin
  • Publication number: 20210383054
    Abstract: An integrated circuit includes a set of gates, a first, second and third conductive structure, and a first, second and third via. The set of gates includes a first, second and third gate. The first, second and third conductive structure extend in the first direction and are located on a second level. The first via couples the first conductive structure and the first gate. The second via couples the second conductive structure and the second gate. The third via couples the third conductive structure and the third gate. The first, second and third via are in a right angle configuration. The first and second gate are separated from each other by a first pitch. The first and third gate are separated from each other by a removed gate portion. The first and second conductive structure are separated from each other in the first direction.
    Type: Application
    Filed: August 19, 2021
    Publication date: December 9, 2021
    Inventors: Shih-Wei PENG, Chih-Liang CHEN, Charles Chew-Yuen YOUNG, Hui-Zhong ZHUANG, Jiann-Tyng TZENG, Shun Li CHEN, Wei-Cheng LIN
  • Patent number: 11195879
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a semiconductor substrate having a first semiconductor material layer separated from a second semiconductor material layer by an insulating layer. A first access transistor is arranged on the first semiconductor material layer, where the first access transistor has a pair of first source/drain regions having a first doping type. A second access transistor is arranged on the first semiconductor material layer, where the second access transistor has a pair of second source/drain regions having a second doping type opposite the first doping type. A resistive memory cell having a bottom electrode and an upper electrode is disposed over the semiconductor substrate, where one of the first source/drain regions and one of the second source/drain regions are electrically coupled to the bottom electrode.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: December 7, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jack Liu, Charles Chew-Yuen Young
  • Publication number: 20210366844
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a plurality of gate structures arranged over a substrate and between adjacent ones of a plurality of source/drain regions within the substrate. A plurality of conductive contacts are electrically coupled to the plurality of source/drain regions. A first interconnect wire is arranged over the plurality of conductive contacts, and a second interconnect wire arranged over the first interconnect wire. A via rail contacts the first interconnect wire and the second interconnect wire. The via rail has an outer sidewall that faces an outermost edge of the plurality of source/drain regions and that is laterally separated from the outermost edge of the plurality of source/drain regions by a non-zero distance. The outer sidewall of the via rail continuously extends past two or more of the plurality of gate structures.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Inventors: Kam-Tou Sio, Chih-Ming Lai, Chun-Kuang Chen, Chih-Liang Chen, Charles Chew-Yuen Young, Chi-Yeh Yu, Jiann-Tyng Tzeng, Ru-Gun Liu, Wen-Hao Chen