Patents by Inventor Charles Crapuchettes

Charles Crapuchettes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170372870
    Abstract: Methods and apparatus to provide efficient and scalable RF inductive plasma processing are disclosed. In some aspects, the coupling between an inductive RF energy applicator and plasma and/or the spatial definition of power transfer from the applicator are greatly enhanced. The disclosed methods and apparatus thereby achieve high electrical efficiency, reduce parasitic capacitive coupling, and/or enhance processing uniformity. Various embodiments comprise a plasma processing apparatus having a processing chamber bounded by walls, a substrate holder disposed in the processing chamber, and an inductive RF energy applicator external to a wall of the chamber. The inductive RF energy applicator comprises one or more radiofrequency inductive coupling elements (ICEs). Each inductive coupling element has a magnetic concentrator in close proximity to a thin dielectric window on the applicator wall.
    Type: Application
    Filed: July 14, 2017
    Publication date: December 28, 2017
    Inventors: Valery A. Godyak, Charles Crapuchettes, Vladimir Nagorny
  • Patent number: 9214319
    Abstract: A plasma reactor and method for improved gas injection for an inductive plasma source for dry strip plasma processing are disclosed. According to embodiments of the present disclosure, gas is fed into a plasma chamber through a gas injection channel located adjacent to the side wall of the plasma chamber, rather than from the center, so that the process gas enters the plasma chamber in a close proximity to the induction coil. In particular embodiments, the process gas that enters the chamber is forced to pass through a reactive volume or active region adjacent the induction coil where efficient heating of electrons occurs, providing increased efficiency of the reactor by improving process gas flow and confinement in the heating area.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: December 15, 2015
    Assignee: Mattson Technology, Inc.
    Inventors: Vladimir Nagorny, Charles Crapuchettes
  • Patent number: 9184072
    Abstract: An apparatus and method are described for processing workpieces in a treatment process. A multi-wafer chamber defines a chamber interior including at least two processing stations within the chamber interior such that the processing stations share the chamber interior. Each processing station includes a plasma source and a workpiece pedestal for exposing one of the workpieces to the treatment process using a respective plasma source. The chamber includes an arrangement of one or more electrically conductive surfaces that are asymmetrically disposed about the workpiece at each processing station in a way which produces a given level of uniformity of the treatment process on a major surface of each workpiece. A shield arrangement provides an enhanced uniformity of exposure of the workpiece to the respective one of the plasma sources that is greater than the given level of uniformity that would be provided in an absence of the shield arrangement.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: November 10, 2015
    Assignee: Mattson Technology, Inc.
    Inventors: Daniel J. Devine, Charles Crapuchettes, Dixit Desai, Rene George, Vincent C. Lee, Yuya Matsuda, Jonathan Mohn, Ryan M. Pakulski, Stephen E. Savas, Martin Zucker
  • Publication number: 20140197136
    Abstract: A plasma reactor and method for improved gas injection for an inductive plasma source for dry strip plasma processing are disclosed. According to embodiments of the present disclosure, gas is fed into a plasma chamber through a gas injection channel located adjacent to the side wall of the plasma chamber, rather than from the center, so that the process gas enters the plasma chamber in a close proximity to the induction coil. In particular embodiments, the process gas that enters the chamber is forced to pass through a reactive volume or active region adjacent the induction coil where efficient heating of electrons occurs, providing increased efficiency of the reactor by improving process gas flow and confinement in the heating area.
    Type: Application
    Filed: July 30, 2012
    Publication date: July 17, 2014
    Inventors: Vladimir Nagorny, Charles Crapuchettes
  • Publication number: 20120160806
    Abstract: Methods and apparatus to provide efficient and scalable RF inductive plasma processing are disclosed. In some aspects, the coupling between an inductive RF energy applicator and plasma and/or the spatial definition of power transfer from the applicator are greatly enhanced. The disclosed methods and apparatus thereby achieve high electrical efficiency, reduce parasitic capacitive coupling, and/or enhance processing uniformity. Various embodiments comprise a plasma processing apparatus having a processing chamber bounded by walls, a substrate holder disposed in the processing chamber, and an inductive RF energy applicator external to a wall of the chamber. The inductive RF energy applicator comprises one or more radiofrequency inductive coupling elements (ICEs). Each inductive coupling element has a magnetic concentrator in close proximity to a thin dielectric window on the applicator wall.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 28, 2012
    Inventors: Valery A. Godyak, Charles Crapuchettes, Vladimir Nagorny
  • Publication number: 20090028761
    Abstract: An apparatus and method are described for processing workpieces in a treatment process. A multi-wafer chamber defines a chamber interior including at least two processing stations within the chamber interior such that the processing stations share the chamber interior. Each processing station includes a plasma source and a workpiece pedestal for exposing one of the workpieces to the treatment process using a respective plasma source. The chamber includes an arrangement of one or more electrically conductive surfaces that are asymmetrically disposed about the workpiece at each processing station in a way which produces a given level of uniformity of the treatment process on a major surface of each workpiece. A shield arrangement provides an enhanced uniformity of exposure of the workpiece to the respective one of the plasma sources that is greater than the given level of uniformity that would be provided in an absence of the shield arrangement.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 29, 2009
    Inventors: Daniel J. Devine, Charles Crapuchettes, Dixit Desai, Rene George, Vincent C. Lee, Yuya Matsuda, Jonathan Mohn, Ryan M. Pakulski, Stephen E. Savas, Martin Zucker
  • Patent number: 6275962
    Abstract: A remote test module is disclosed for selectively interfacing a plurality of test channels between a tester interface and a plurality of specialized pins connected to a device-under-test. The tester interface is coupled to a test controller for generating predetermined test signals. The remote test module includes a signal conditioner responsive to the test controller for modifying said predetermined test signals into module test signals and applying the module test signals to the specialized pins of the device-under-test and a connection apparatus. The connection apparatus has a plurality of conductive paths for coupling the signal conditioner between the tester interface and the specialized pins.
    Type: Grant
    Filed: October 23, 1998
    Date of Patent: August 14, 2001
    Assignee: Teradyne, Inc.
    Inventors: Jonathan Fuller, Charles Crapuchettes, Stuart Nelson