Patents by Inventor Charles Derrick Quarles, JR.

Charles Derrick Quarles, JR. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11249057
    Abstract: Systems and methods are described to provide speciation of silicon species present in a remote sample for analysis. A method embodiment includes, but is not limited to, receiving a fluid sample containing inorganic silicon in the presence of bound silicon from a remote sampling system via a fluid transfer line; transferring the fluid sample to an inline chromatographic separation system; separating the inorganic silicon from the bound silicon via the inline chromatographic separation system; transferring the separated inorganic silicon and bound silicon to a silicon detector in fluid communication with the inline chromatographic separation system; and determining an amount of one or more of the inorganic silicon or the bound silicon in the fluid sample via the silicon detector.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: February 15, 2022
    Assignee: ELEMENTAL SCIENTIFIC, INC.
    Inventors: Jacob Unnerstall, Patrick Sullivan, Daniel R. Wiederin, Brad Prucha, Charles Derrick Quarles, Jr., Jae Seok Lee
  • Patent number: 10269525
    Abstract: A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: April 23, 2019
    Assignees: Clemson University Research Foundation, Battelle Memorial Institute on behalf of Pacific Northwest National Laboratory, The Regents of the University of California—Lawrence Berkeley National Laboratory
    Inventors: R. Kenneth Marcus, Charles Derrick Quarles, Jr., Richard E. Russo, David W. Koppenaal, Charles J. Barinaga, Anthony J. Carado
  • Publication number: 20170162358
    Abstract: A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).
    Type: Application
    Filed: November 23, 2016
    Publication date: June 8, 2017
    Inventors: R. Kenneth Marcus, Charles Derrick Quarles, JR., Richard E. Russo, David W. Koppenaal, Charles J. Barinaga, Anthony J. Carado
  • Patent number: 9536725
    Abstract: A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: January 3, 2017
    Assignees: Clemson University, The Regents of the University of California, Battelle Memorial Institute on behalf of Pacific Northwest National Laboratory
    Inventors: R. Kenneth Marcus, Charles Derrick Quarles, Jr., Richard E. Russo, David W. Koppenaal, Charles J. Barinaga, Anthony J. Carado
  • Publication number: 20140218729
    Abstract: A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).
    Type: Application
    Filed: February 4, 2014
    Publication date: August 7, 2014
    Applicants: Clemson University, Pacific Northwest National Laboratory, Lawrence Berkeley National Laboratory
    Inventors: R. Kenneth Marcus, Charles Derrick Quarles, JR., Richard E. Russo, David W. Koppenaal, Charles J. Barinaga, Anthony J. Carado