Patents by Inventor Charles E. Hamilton

Charles E. Hamilton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8985119
    Abstract: A nerve-stimulation device and method using light to provide a source of precise stimulation on one or more nerve fibers. In some embodiments, this simulation is provided through a device and method wherein a laser- or LED-light-generating source is operatively coupled to an optical fiber, which in turn is coupled to a plug in the end of a holder in a sheath. Light is then passed from the light source through the optical fiber to the holder and out a selected optical tip on the sheath to provide an efficacious amount of light to simulate nerves. In some embodiments, the device is constructed from non-magnetic material such as glass, plastic or ceramics. In some embodiments, the light emanating from the optical tip can be controlled manually or automatically. Some embodiments omit the fiber and use light directly from the laser diode.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: March 24, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: James S. Webb, Charles E. Hamilton, Heather A. Ralph, Mark P. Bendett, Charles A. Lemaire
  • Patent number: 8472763
    Abstract: A method and apparatus use a photonic-crystal fiber having a very large core while maintaining a single transverse mode. In some fiber lasers and amplifiers having large cores problems exist related to energy being generated at multiple-modes (i.e., polygamy), and of mode hopping (i.e., promiscuity) due to limited control of energy levels and fluctuations. The problems of multiple-modes and mode hopping result from the use of large-diameter waveguides, and are addressed by the invention. This is especially true in lasers using large amounts of energy (i.e., lasers in the one-megawatt or more range). By using multiple small waveguides in parallel, large amounts of energy can be passed through a laser, but with better control such that the aforementioned problems can be reduced. An additional advantage is that the polarization of the light can be maintained better than by using a single fiber core.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: June 25, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Anping Liu, Eric C. Honea, Charles A. Lemaire, Roy D. Mead, Christopher D. Brooks, Andrew J. W. Brown, Charles E. Hamilton, Thomas H. Loftus, Fabio Di Teodoro
  • Patent number: 7736382
    Abstract: A nerve-stimulation device and method using light to provide a source of precise stimulation on one or more nerve fibers. In some embodiments, this simulation is provided through a device and method wherein a laser- or LED-light-generating source is operatively coupled to an optical fiber, which in turn is coupled to a plug in the end of a holder in a sheath. Light is then passed from the light source through the optical fiber to the holder and out a selected optical tip on the sheath to provide an efficacious amount of light to simulate nerves. In some embodiments, the device is constructed from non-magnetic material such as glass, plastic or ceramics. In some embodiments, the light emanating from the optical tip can be controlled manually or automatically. Some embodiments omit the fiber and use light directly from the laser diode.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: June 15, 2010
    Assignee: Lockheed Martin Corporation
    Inventors: James S. Webb, Charles E. Hamilton, Heather A. Ralph, Mark P. Bendett, Charles A. Lemaire
  • Patent number: 7535631
    Abstract: Apparatus and method for spectral-beam combining light from a plurality of high-power fiber lasers that, in some embodiments, use two substantially identical diffraction gratings in a parallel, mutually compensating configuration to combine a plurality of separate parallel input beams each having a slightly different successively higher wavelength into a single output beam of high quality. In other embodiments, a single diffraction grating is used to combine a plurality of different wavelengths, wherein the input laser beams are obtained from very narrow linewidth sources to reduce chromatic dispersion. In some embodiments, diagnostics and adjustments of wavelengths and/or positions and angles are made dynamically in real time to maintain the combination of the plurality input beams into a single high-quality output beam.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: May 19, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Andrew J. W. Brown, Eric C. Honea, Thomas H. Loftus, Roy D. Mead, Charles E. Hamilton, Anping Liu, Charles A. Lemaire
  • Patent number: 7233442
    Abstract: Apparatus and method for spectral-beam combining light from a plurality of high-power fiber lasers that, in some embodiments, use two substantially identical diffraction gratings in a parallel, mutually compensating configuration to combine a plurality of separate parallel input beams each having a slightly different successively higher wavelength into a single output beam of high quality. In other embodiments, a single diffraction grating is used to combine a plurality of different wavelengths, wherein the input laser beams are obtained from very narrow linewidth sources to reduce chromatic dispersion. In some embodiments, diagnostics and adjustments of wavelengths and/or positions and angles are made dynamically in real time to maintain the combination of the plurality input beams into a single high-quality output beam.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: June 19, 2007
    Assignee: Aculight Corporation
    Inventors: Andrew J. W. Brown, Eric C. Honea, Thomas H. Loftus, Roy D. Mead, Charles E. Hamilton, Anping Liu, Charles A. Lemaire
  • Patent number: 7199924
    Abstract: Apparatus and method for spectral-beam combining light from a plurality of high-power fiber lasers that, in some embodiments, use two substantially identical diffraction gratings in a parallel, mutually compensating configuration to combine a plurality of separate parallel input beams each having a slightly different successively higher wavelength into a single output beam of high quality. In other embodiments, a single diffraction grating is used to combine a plurality of different wavelengths, wherein the input laser beams are obtained from very narrow linewidth sources to reduce chromatic dispersion. In some embodiments, diagnostics and adjustments of wavelengths and/or positions and angles are made dynamically in real time to maintain the combination of the plurality input beams into a single high-quality output beam.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: April 3, 2007
    Assignee: Aculight Corporation
    Inventors: Andrew J. W. Brown, Eric C. Honea, Thomas H. Loftus, Roy D. Mead, Charles E. Hamilton, Anping Liu, Charles A. Lemaire
  • Patent number: 7065107
    Abstract: A method and apparatus for improving the beam quality of the emissions from a multimode gain medium such as a broad-stripe laser through the use of SBC techniques is provided. In order to achieve the desired beam quality without a significant reduction in output power, discrete lasing regions are formed across the gain medium using an etalon or similar device located within the SBC cavity.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: June 20, 2006
    Assignee: Aculight Corporation
    Inventors: Charles E. Hamilton, Dennis D Lowenthal, Roy D. Mead
  • Patent number: 5623510
    Abstract: A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 .mu.m, and is tunable over a 6 nm range near about 2.936 .mu.m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 .mu.m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 .mu.m (air wavelength).
    Type: Grant
    Filed: May 8, 1995
    Date of Patent: April 22, 1997
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Charles E. Hamilton, Laurence H. Furu
  • Patent number: 5081630
    Abstract: A laser system for producing pulsed, longitudinal mode optical energy over a widely tunable range of wavelengths. The system includes an optical cavity and a solid-state gain medium. The optical cavity comprises first, second, and third optical element means. The first optical element means reflects energy received along a first reflective optical axis and directs the energy toward the second optical element means, which diffracts the optical energy into at least two orders of interference. The energy diffracted according to a first order of interference is reflected back toward the second optical element means by a third optical element means, thereby creating a resonant optical cavity. Another portion of the optical energy diffracted by the second optical element means is produced as an output beam.
    Type: Grant
    Filed: September 29, 1989
    Date of Patent: January 14, 1992
    Assignee: Amoco Corporation
    Inventors: Dennis D. Lowenthal, Clifford H. Muller, Charles E. Hamilton, Dean R. Guyer, Kenneth W. Kangas
  • Patent number: 4805343
    Abstract: A hollow fiber formed of hydrophilic material and having permeable walls is treated to enhance the permeability. Reactions used to treat the fiber have a gas inside and gas outside, a gas inside and liquid outside, a liquid inside and gas outside, and a liquid inside and a liquid outside. The treatments generally involve the plasticizing of the fiber material while having the inside of the fiber at a higher pressure than the outside. These treatments produce a structural change in the fiber from a flexible tube having strong walls to expanded, rigid and somewhat fragile walls. Where more than a short length of the treated fiber is to be used, an open mesh cage is used to confine the fiber to a desired volume during treatment and to protect it subsequently. A technique for joining flexible tubing to the treated fiber is presented. The treated fiber may be used in apparatus and methods involving osmosis and reverse osmosis.
    Type: Grant
    Filed: October 20, 1986
    Date of Patent: February 21, 1989
    Assignee: Southeastern Illinois College Foundation
    Inventors: James A. Patterson, Robert M. Piecuch, Charles E. Hamilton