Patents by Inventor CHARLES E. REECE

CHARLES E. REECE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11920253
    Abstract: A method for vacuum heat treating Nb, such as is used in superconducting radio frequency cavities, to engineer the interstitial oxygen profile with depth into the surface to conveniently optimize the low-temperature rf surface resistance of the material. An example application is heating of 1.3 GHz accelerating structures between 250-400° C. to achieve a very high quality factor of 5×1010 at 2.0 K. With data supplied by secondary ion mass spectrometry measurements, application of oxide decomposition and oxygen diffusion theory was applied to quantify previously unknown parameters crucial in achieving the oxygen alloy concentration profiles required to optimize the rf surface resistance. RF measurements of vacuum heat treated Nb superconducting radio frequency cavities confirmed the minimized surface resistance (higher Q0) previously expected only from 800° C. diffusive alloying with nitrogen.
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: March 5, 2024
    Assignee: Jefferson Science Associates, LLC
    Inventors: Ari D. Palczewski, Eric M. Lechner, Charles E. Reece
  • Publication number: 20220364254
    Abstract: A method for vacuum heat treating Nb, such as is used in superconducting radio frequency cavities, to engineer the interstitial oxygen profile with depth into the surface to conveniently optimize the low-temperature rf surface resistance of the material. An example application is heating of 1.3 GHz accelerating structures between 250-400° C. to achieve a very high quality factor of 5×1010 at 2.0 K. With data supplied by secondary ion mass spectrometry measurements, application of oxide decomposition and oxygen diffusion theory was applied to quantify previously unknown parameters crucial in achieving the oxygen alloy concentration profiles required to optimize the rf surface resistance. RF measurements of vacuum heat treated Nb superconducting radio frequency cavities confirmed the minimized surface resistance (higher Q0) previously expected only from 800° C. diffusive alloying with nitrogen.
    Type: Application
    Filed: May 3, 2022
    Publication date: November 17, 2022
    Inventors: ARI D. PALCZEWSKI, ERIC M. LECHNER, CHARLES E. REECE