Patents by Inventor Charles J. Patrissi

Charles J. Patrissi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11460505
    Abstract: A modified battery cell for simulating failure conditions includes an electrical cell and a controllable voltage source. A transistor gate is joined to a positive output of the source and to a negative tab of the cell at the transistor source. One side of a resistor implanted in the cell is joined to the transistor drain and the other side is joined to the cell positive tab. Controlling voltage source voltage allows current to flow from the transistor source to the transistor drain and through the resistor. Current flow through the resistor causes heating within the electrical cell that can be monitored to simulate an electrical cell failure. A method for testing an electrical cell is also provided.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: October 4, 2022
    Inventors: Charles J Patrissi, Jason L Mercier
  • Patent number: 11043705
    Abstract: A modified battery cell for simulating failure conditions includes a multiple layer electrical cell. A transistor having a source, a gate, and a drain is positioned in the cell. A controllable voltage source is provided, joined to the gate and source of the transistor. The transistor source is further joined to a first location within said electrical cell multiple layers, and the transistor drain is electrically joined to a second location within said electrical cell multiple layers. Voltage from the controllable voltage source can reduce resistance between said transistor source and said transistor drain for simulating a fault condition between the first location and the second location.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: June 22, 2021
    Inventors: Charles J Patrissi, Joseph H Fontaine, Jian Tan
  • Patent number: 10895606
    Abstract: A method for testing an internal short circuits in an electrochemical cell is provided. A transistor is implanted in the cell, and it is electrically connected to a controllable voltage source. The transistor is joined between positive and negative components of the cell. The transistor is maintained at high resistance before start of testing. The voltage source is used to reduce electrical resistance in the transistor to simulate an internal short circuit in the electrochemical cell. Thermal runaway propagation in the cell is measured.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: January 19, 2021
    Inventors: Charles J Patrissi, Joseph H Fontaine, Jian Tan
  • Patent number: 10193147
    Abstract: An electrochemical cell includes a cathode pouch, an anode pouch, and a membrane separating the anode and cathode pouch. A lithium-based catholyte is inside the cathode pouch and between the membrane and pouch. A cathode current collector is located in contact with the catholyte. An anolyte having a silicon based lithium receiving material is between the anode pouch and the membrane. An anode current collector is located in contact with the anolyte. The volume between the anode pouch and the membrane contracts and expands in order to accommodate changes in anolyte volume during charging and discharge of the cell.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: January 29, 2019
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Charles J Patrissi, Christian R Schumacher, Steven P Tucker
  • Patent number: 9340889
    Abstract: A bipolar electrode fabricated with a combination of materials that will physically separate the catholyte from the metal anode of the electrode while providing high electrical conductivity between the metal anode and the catalyst cathode. This is accomplished by layering the catalyst cathode over a composite of conductive adhesive and conductive foil that is then affixed to the metal anode.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 17, 2016
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Charles J. Patrissi, Maria G. Medeiros, Louis G. Carreiro, Steven P. Tucker, Russell R. Bessette, Craig M. Deschenes
  • Patent number: 8088162
    Abstract: A synthetic muscle comprises an outer layer having an interior filled with a proton containing electrolyte. A first electrode extends into the interior, and a second electrode extends through the interior. The second electrode is attached to the outer layer at two locations. An ion selective microporous membrane extends through the interior along the length of the second electrode and is also attached to the out layer at the two locations. The ion selective membrane is also attached to the second electrode at a plurality of points along its length, defining a plurality of pockets of the ion selective membrane. The ion elective membrane is generally disposed between the two electrodes. The two electrodes are in communication through a power source. Using the power source, an electroosmotic flow is established across the ion exchange membrane from the first electrode to the second electrode, inflating the pockets and constricting the outer layer.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: January 3, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Thomas J. Gieseke, Charles J. Patrissi
  • Patent number: 7906340
    Abstract: An electrochemical potentiometric titration method that entails titration of a known volume of a catholyte containing an unknown amount of hydrogen peroxide in a titration cell having two electrodes, a platinum working electrode and a silver/silver chloride reference electrode. A known concentration of a titrant is added to the catholyte in the titration cell. Simultaneously, as the titrant is added the potential between the working electrode and the reference electrode is monitored. The point at which all of the hydrogen peroxide has been consumed is signaled when the cell potential changes abruptly. Since the concentration of the titrant is already known, the amount of titrant added (concentration multiplied by volume) is directly related to the amount of hydrogen peroxide consumed. The concentration of hydrogen peroxide is calculated from the volume of catholyte and the moles of hydrogen peroxide.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: March 15, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Charles J. Patrissi, Russell R. Bessette
  • Publication number: 20090282898
    Abstract: An electrochemical potentiometric titration method that entails titration of a known volume of a catholyte containing an unknown amount of hydrogen peroxide in a titration cell having two electrodes, a platinum working electrode and a silver/silver chloride reference electrode. A known concentration of a titrant is added to the catholyte in the titration cell. Simultaneously, as the titrant is added the potential between the working electrode and the reference electrode is monitored. The point at which all of the hydrogen peroxide has been consumed is signaled when the cell potential changes abruptly. Since the concentration of the titrant is already known, the amount of titrant added (concentration multiplied by volume) is directly related to the amount of hydrogen peroxide consumed. The concentration of hydrogen peroxide is calculated from the volume of catholyte and the moles of hydrogen peroxide.
    Type: Application
    Filed: April 10, 2009
    Publication date: November 19, 2009
    Inventors: Charles J. Patrissi, Russell R. Bessette
  • Publication number: 20090266716
    Abstract: A bipolar electrode fabricated with a combination of materials that will physically separate the catholyte from the metal anode of the electrode while providing high electrical conductivity between the metal anode and the catalyst cathode. This is accomplished by layering the catalyst cathode over a composite of conductive adhesive and conductive foil that is then affixed to the metal anode.
    Type: Application
    Filed: April 10, 2009
    Publication date: October 29, 2009
    Inventors: Charles J. Patrissi, Maria G. Medeiros, Louis G. Carreiro, Steven P. Tucker, Russell R. Bessette, Craig M. Deschenes
  • Patent number: 7582334
    Abstract: A new treatment method for ion exchange membranes used in semi-fuel cells that accelerates the wetting of the membranes by aqueous electrolyte solutions, thus reducing the start up time for metal/hydrogen peroxide-based semi-fuel cells. Specifically, a NAFIONĀ® membrane that is intended for dry storage in a semi-fuel cell is treated with glycerin (glycerol) to enhance its rate of absorption of electrolyte solution when the semi-fuel cell is activated.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: September 1, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Louis G. Carreiro, Charles J. Patrissi, Steven P. Tucker
  • Publication number: 20090196983
    Abstract: A new treatment method for ion exchange membranes used in semi-fuel cells that accelerates the wetting of the membranes by aqueous electrolyte solutions, thus reducing the start up time for metal/hydrogen peroxide-based semi-fuel cells. Specifically, a NafionĀ® membrane that is intended for dry storage in a semi-fuel cell is treated with glycerin (glycerol) to enhance its rate of absorption of electrolyte solution when the semi-fuel cell is activated.
    Type: Application
    Filed: August 11, 2004
    Publication date: August 6, 2009
    Inventors: Louis G. Carreiro, Charles J. Patrissi, Steven P. Tucker
  • Patent number: 7534394
    Abstract: An electrochemical potentiometric titration method that entails titration of a known volume of a catholyte containing an unknown amount of hydrogen peroxide in a titration cell having two electrodes, a platinum working electrode and a silver/silver chloride reference electrode. A known concentration of a titrant is added to the catholyte in the titration cell. Simultaneously, as the titrant is added the potential between the working electrode and the reference electrode is monitored. The point at which all of the hydrogen peroxide has been consumed is signaled when the cell potential changes abruptly. Since the concentration of the titrant is already known, the amount of titrant added (concentration multiplied by volume) is directly related to the amount of hydrogen peroxide consumed. The concentration of hydrogen peroxide is calculated from the volume of catholyte and the moles of hydrogen peroxide.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: May 19, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Charles J. Patrissi, Russell R. Bessette
  • Patent number: 7354626
    Abstract: A direct charging electrostatic flocking method is provided for the fabrication of a fibrous structure. Fibers are deposited directly on a first electrically conductive surface while a second electrically conductive surface with an adhesive thereon is disposed over the first surface. A vacuum is created in the space between the first electrically conductive surface and the second electrically conductive surface. The vacuum is then filled with sulfur hexafluoride gas. An electric field is generated between the first and second electrically conductive surfaces. The fibers leave the first electrically conductive surface, accelerate through the electric field and sulfur hexafluoride gas, and are coupled on one end thereof to the adhesive. As a result of using sulfur hexafluoride rather than air there is an increase in fiber density of the fibrous structure.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: April 8, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Charles J. Patrissi, Russell R. Bessette, Louis G. Carreiro, Yong K. Kim, Thomas M. Arruda, Craig M. Deschenes