Patents by Inventor Charles J. Tytler

Charles J. Tytler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240028033
    Abstract: In one example embodiment, a computer-implemented method includes receiving data representing a motion plan of the autonomous vehicle via a plurality of control lanes configured to implement the motion plan to control a motion of the autonomous vehicle, the plurality of control lanes including at least a first control lane and a second control lane, and controlling the first control lane to implement the motion plan. The method includes detecting one or more faults associated with implementation of the motion plan by the first control lane or the second control lane, or in generation of the motion plan, and in response to one or more faults, controlling the first control lane or the second control lane to adjust the motion of the autonomous vehicle based at least in part on one or more fault reaction parameters associated with the one or more faults.
    Type: Application
    Filed: October 5, 2023
    Publication date: January 25, 2024
    Inventors: Aaron L. Greenfield, Diana Yanakiev, Frederic Tschanz, Charles J. Tytler
  • Publication number: 20220206490
    Abstract: In one example embodiment, a computer-implemented method includes receiving data representing a motion plan of the autonomous vehicle via a plurality of control lanes configured to implement the motion plan to control a motion of the autonomous vehicle, the plurality of control lanes including at least a first control lane and a second control lane, and controlling the first control lane to implement the motion plan. The method includes detecting one or more faults associated with implementation of the motion plan by the first control lane or the second control lane, or in generation of the motion plan, and in response to one or more faults, controlling the first control lane or the second control lane to adjust the motion of the autonomous vehicle based at least in part on one or more fault reaction parameters associated with the one or more faults.
    Type: Application
    Filed: March 15, 2022
    Publication date: June 30, 2022
    Inventors: Aaron L. Greenfield, Diana Yanakiev, Frederic Tschanz, Charles J. Tytler
  • Patent number: 11307579
    Abstract: In one example embodiment, a computer-implemented method includes receiving data representing a motion plan of the autonomous vehicle via a plurality of control lanes configured to implement the motion plan to control a motion of the autonomous vehicle, the plurality of control lanes including at least a first control lane and a second control lane, and controlling the first control lane to implement the motion plan. The method includes detecting one or more faults associated with implementation of the motion plan by the first control lane or the second control lane, or in generation of the motion plan, and in response to one or more faults, controlling the first control lane or the second control lane to adjust the motion of the autonomous vehicle based at least in part on one or more fault reaction parameters associated with the one or more faults.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: April 19, 2022
    Assignee: UATC, LLC
    Inventors: Aaron L. Greenfield, Diana Yanakiev, Frederic Tschanz, Charles J. Tytler
  • Publication number: 20210271240
    Abstract: In one example embodiment, a computer-implemented method includes receiving data representing a motion plan of the autonomous vehicle via a plurality of control lanes configured to implement the motion plan to control a motion of the autonomous vehicle, the plurality of control lanes including at least a first control lane and a second control lane, and controlling the first control lane to implement the motion plan. The method includes detecting one or more faults associated with implementation of the motion plan by the first control lane or the second control lane, or in generation of the motion plan, and in response to one or more faults, controlling the first control lane or the second control lane to adjust the motion of the autonomous vehicle based at least in part on one or more fault reaction parameters associated with the one or more faults.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Aaron L. Greenfield, Diana Yanakiev, Frederic Tschanz, Charles J. Tytler
  • Patent number: 11009874
    Abstract: In one example embodiment, a computer-implemented method includes receiving data representing a motion plan of the autonomous vehicle via a plurality of control lanes configured to implement the motion plan to control a motion of the autonomous vehicle, the plurality of control lanes including at least a first control lane and a second control lane, and controlling the first control lane to implement the motion plan. The method includes detecting one or more faults associated with implementation of the motion plan by the first control lane or the second control lane, or in generation of the motion plan, and in response to one or more faults, controlling the first control lane or the second control lane to adjust the motion of the autonomous vehicle based at least in part on one or more fault reaction parameters associated with the one or more faults.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: May 18, 2021
    Assignee: UATC, LLC
    Inventors: Aaron L. Greenfield, Diana Yanakiev, Frederic Tschanz, Charles J. Tytler
  • Patent number: 9098997
    Abstract: Systems and methods for generating a predicted flight trajectory using a combination of aircraft state data, flight information, environmental information, historical data or derived flight information from aircraft messaging which can be used for the transmission of environmental data. The generated trajectory prediction is assigned a level of confidence based on fidelity, merit or accuracy. The level of predicted accuracy is based on the number of and sources of the specific information, time, distance or flight phase. The predicted trajectory includes pseudo-waypoints at flight transitions not readily available in the flight information and also includes the environmental conditions at all waypoint (including pseudo-waypoint) locations.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: August 4, 2015
    Assignee: The Boeing Company
    Inventors: Tamara S. Stewart, Louis J. Bailey, Charles J. Tytler
  • Publication number: 20130085672
    Abstract: Systems and methods for generating a predicted flight trajectory using a combination of aircraft state data, flight information, environmental information, historical data or derived flight information from aircraft messaging which can be used for the transmission of environmental data. The generated trajectory prediction is assigned a level of confidence based on fidelity, merit or accuracy. The level of predicted accuracy is based on the number of and sources of the specific information, time, distance or flight phase. The predicted trajectory includes pseudo-waypoints at flight transitions not readily available in the flight information and also includes the environmental conditions at all waypoint (including pseudo-waypoint) locations.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Tamara S. Stewart, Louis J. Bailey, Charles J. Tytler