Patents by Inventor Charles M. Carlstrom

Charles M. Carlstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11335940
    Abstract: A fuel cell stack includes an endplate assembly having a structural endplate. An insulator plate has a second exterior surface contacting a first interior surface of the structural endplate and a second interior surface on an opposite side of the insulator plate. A third plate has a third exterior surface contacting the second interior surface and a third interior surface on an opposite side of the third plate relative to the insulator plate. The third interior surface and third exterior surface are substantially flat. The second interior surface and the third exterior surface contact each other substantially continuously in a longitudinal direction and a lateral direction, and are flat and substantially parallel to each other. The second exterior surface is contoured such that the second exterior surface is not flat and is substantially non-parallel relative to the third interior surface.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: May 17, 2022
    Assignee: PLUG POWER INC.
    Inventors: Charles M Carlstrom, Jr., Michael Anthony Cacioppo, James D'Aleo, Charles Elder
  • Publication number: 20200227770
    Abstract: A fuel cell stack includes an endplate assembly having a structural endplate. An insulator plate has a second exterior surface contacting a first interior surface of the structural endplate and a second interior surface on an opposite side of the insulator plate. A third plate has a third exterior surface contacting the second interior surface and a third interior surface on an opposite side of the third plate relative to the insulator plate. The third interior surface and third exterior surface are substantially flat. The second interior surface and the third exterior surface contact each other substantially continuously in a longitudinal direction and a lateral direction, and are flat and substantially parallel to each other. The second exterior surface is contoured such that the second exterior surface is not flat and is substantially non-parallel relative to the third interior surface.
    Type: Application
    Filed: March 17, 2020
    Publication date: July 16, 2020
    Applicant: PLUG POWER INC.
    Inventors: Charles M. CARLSTROM, JR., Michael Anthony CACIOPPO, James D'ALEO, Charles ELDER
  • Patent number: 10615445
    Abstract: A fuel cell stack includes an endplate assembly having a structural endplate. An insulator plate has a second exterior surface contacting a first interior surface of the structural endplate and a second interior surface on an opposite side of the insulator plate. A third plate has a third exterior surface contacting the second interior surface and a third interior surface on an opposite side of the third plate relative to the insulator plate. The third interior surface and third exterior surface are substantially flat. The second interior surface and the third exterior surface contact each other substantially continuously in a longitudinal direction and a lateral direction, and are flat and substantially parallel to each other. The second exterior surface is contoured such that the second exterior surface is not flat and is substantially non-parallel relative to the third interior surface.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: April 7, 2020
    Assignee: PLUG POWER INC.
    Inventors: Charles M Carlstrom, Jr., Michael Anthony Cacioppo, James D'Aleo, Charles Elder
  • Publication number: 20190341644
    Abstract: A fuel cell stack includes an endplate assembly of a fuel cell system which includes a structural endplate having a first exterior surface and a first interior surface located on an opposite side of the endplate relative to the first exterior surface. An insulator plate has a second exterior surface contacting the first interior surface of the structural endplate and second interior surface on an opposite side of the insulator plate relative to the second exterior surface. A third plate has a third exterior surface contacting the second interior surface and a third interior surface on an opposite side of the third plate relative to the insulator plate. The third interior surface and third exterior surface are substantially flat such that third interior surface and the third exterior surface are about parallel to each other.
    Type: Application
    Filed: May 3, 2018
    Publication date: November 7, 2019
    Applicant: PLUG POWER INC.
    Inventors: Charles M CARLSTROM, JR., Michael Anthony CACIOPPO, James D'ALEO, Charles ELDER
  • Publication number: 20140234740
    Abstract: In one embodiment, a membrane electrode assembly of a fuel cell has an anode aspect and a cathode aspect. A fuel distribution structure is disposed adjacent to the anode aspect. The fuel distribution structure has a fuel feed port configured to receive and inject liquid fuel to a flow field plate. The flow field plate has flow channels formed therein that split and spread from the fuel feed port to exit ports. The flow channels are configured to convey heat to fuel passing there through to substantially convert the liquid fuel to vaporous fuel within the flow channels. The exit ports are configured to deliver the resulting vaporous fuel to the anode aspect to substantially uniformly distribute fuel across the anode aspect. Further, an enthalpy exchanger and heat spreader assembly is in thermal contact with the fuel distribution structure and configured to provide to it heat from fuel cell operation.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Applicant: MTI MicroFuel Cells Inc.
    Inventors: David H. Leach, Michael L. Chen, Charles M. Carlstrom, JR., Constantinos Minas, Keith G. Brown, Robert Miller, James K. Prueitt, John E. Meschter, Amit Chaugule, Mark C. Mendrick, Russel H. Marvin
  • Patent number: 8735012
    Abstract: A fuel cell system which includes a fuel distribution structure that uniformly distributes vaporizing fuel to a fuel cell is provided. As the fuel travels in a flow field channel in the fuel distribution structure, it is substantially converted to a vapor by the heat of the fuel cell operation in such a manner that the resulting vapor pressure works to substantially uniformly distribute fuel evenly outwardly across substantially the entire active area of the anode aspect of one or more membrane electrode assemblies in the system, and whereby localized, uneven “hot spots” of fuel at the anode aspects are substantially prevented. A pair of enthalpy exchanger and heat spreader assemblies include a cathode current collector element that also has a heat spreader plate that collects and redirects heat in the fuel cell system, the assembly acting to manage the heat, temperature and condensation in the fuel cell system.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: May 27, 2014
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: David Leach, Michael L. Chen, Charles M. Carlstrom, Jr., Constantinos Minas, Keith G. Brown, Robert Miller, James K. Prueitt, John E. Meschter, Amit Chaugule, Russel H. Marvin, Mark C. Mendrick
  • Publication number: 20140105813
    Abstract: A hydrogen recycling system for a controlled atmosphere unit operation with an exhaust vent and an inlet port includes: a hydrogen recycle unit in fluid communication with the exhaust vent and in fluid communication with the inlet port; and an oxygen reactor being located between the controlled atmosphere unit operation and said hydrogen recycle unit and in fluid communication with the controlled atmosphere unit operation and said hydrogen recycle unit.
    Type: Application
    Filed: October 17, 2012
    Publication date: April 17, 2014
    Inventors: Robert S. Hirsch, Glenn A. Eisman, Charles M. Carlstrom
  • Patent number: 8101318
    Abstract: A spring loaded direct oxidation fuel cell assembly reduces the effects of precompression relaxation. A near flat spring and a distribution plate form a spring assembly that is disposed between a membrane electrode assembly and one of the current collectors in the fuel cell. The components are assembled into a fuel cell assembly and are precompressed, and a spring yielding process is performed. While precompression is being applied, a set of pins and a plastic frame are insert molded around the fuel cell assembly to hold the components in place. Subsequently, as the precompression relaxes, the spring assembly forces act to maintain an evenly distributed compression on the MEA, thereby compensating for the loss of precompression. A related method of manufacturing a fuel cell assembly is provided.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: January 24, 2012
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: Constantinos Minas, Megan A. Fannon, Russ Marvin, Charles M. Carlstrom, Jr., Robert S. Hirsch, Sampath Venkataswamy
  • Patent number: 7875400
    Abstract: A fuel cell system having internal pushback of water, with a compact, thermally integrated enthalpy exchanger enabling effective hydration control in a small fuel cell system is provided. The enthalpy exchanger provides for the moisture in the fuel cell effluent to be used to humidify the incoming air stream to allow the fuel cell to be operated at higher temperatures while avoiding dry out. The enthalpy exchanger includes a moisture permeable membrane which collects moisture from the exhaust flow and makes this moisture available to an incoming air stream, thus humidifying the incoming air stream. In addition, the waste heat from the fuel cell reactions is transferred to the incoming air stream. The exhaust stream from the anode can also be used to provide additional moisture and heat to the enthalpy exchanger to be added to the incoming air stream. A water separator is also provided in one embodiment.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: January 25, 2011
    Assignee: MTI Microfuel Cells, Inc.
    Inventors: Charles M. Carlstrom, Jr., Russ Marvin, David DeAngelis, David H. Leach, Louis Schick
  • Publication number: 20100124683
    Abstract: A heat spreader assembly that provides electrical, thermal and structural functions to the fuel cell. The heat spreader assembly comprises two bulk composite material layers, and a heat spreader element. The heat spreader element includes a copper layer sandwiched between two stainless steel layers. The stainless steel layers are bonded to the bulk composite layers by a conductive thermal set adhesive. The lamination applied to the stainless steel layers enables heat and electricity to flow from the cathode while maintaining low resistance among other layers of the fuel cell. The copper layer diffuses heat across the layer and functions as cathode current collector for a fuel cell. The bulk composite material layers function as a cold side of an enthalpy exchanger system and a cathode flow field. Further the composite material includes flow channels formed throughout the material to evenly distribute incoming air over the enthalpy exchanger membrane and to the cathode of the MEA.
    Type: Application
    Filed: November 20, 2008
    Publication date: May 20, 2010
    Applicant: MTI MICROFUEL CELLS INC.
    Inventors: Charles M. Carlstrom, JR., Constantinos Minas, George Allen, John E. Meschter, Amit Chaugule, James K. Prueitt
  • Publication number: 20100108536
    Abstract: An electrochemical actuator system includes a membrane electrode assembly coupled to a source of electrical energy. The membrane electrode assembly includes a proton-exchange membrane disposed between a first electrode and a second electrode. A first chamber is located on a first side of the membrane electrode assembly and is configured to hold a gas generated by applying electrical energy to the first electrode of the membrane electrode assembly. The membrane electrode assembly and the first chamber are sealed to inhibit fluid communication with the surrounding ambient environment. The chamber includes a diaphragm deformable in response to a change in an amount of the gas in the first chamber. A deformation of the diaphragm in response to the change in the amount of the gas in the first chamber causes a movement of an actuating member coupled to the diaphragm.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Applicant: MTI MICRO FUEL CELLS, INC.
    Inventors: Charles M. CARLSTROM, JR., David H. LEACH
  • Publication number: 20100112381
    Abstract: A heat switch system includes a first surface thermally coupled to at least a portion of an associated component requiring temperature control. A second surface is spaced by a gap relative to the first surface. A gas generator is coupled to a first chamber configured to hold a gas generated by the gas generator. The first chamber includes a diaphragm configured to be deformed in response to an increase in an amount of the gas in the first chamber. A deformation of the chamber in response to the increase in the amount of the gas in the first chamber causes movement of the first surface and/or the second surface such that the first surface and the second surface move toward each other to reduce the gap and heat is transferred from the first surface to the second surface.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Applicant: MTI MICRO FUEL CELLS, INC.
    Inventors: Charles M. CARLSTROM, JR., David H. LEACH
  • Publication number: 20100108534
    Abstract: A valve system includes a gas generator coupled to a first chamber and a passage for conveying a flow of fluid therethrough. The first chamber is configured to hold a gas generated by the gas generator. The chamber includes a diaphragm deformable in response to an increase in an amount of the gas in the first chamber received by the gas generator. A deformation of the diaphragm in response to the increase in the amount of the gas in the first chamber inhibits flow of the fluid through the passage.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Applicant: MTI MICRO FUEL CELLS, INC.
    Inventors: Charles M. CARLSTROM, JR., David H. LEACH
  • Publication number: 20080220305
    Abstract: A fuel cell system having internal pushback of water, with a compact, thermally integrated enthalpy exchanger enabling effective hydration control in a small fuel cell system is provided. The enthalpy exchanger provides for the moisture in the fuel cell effluent to by used to humidify the incoming air stream to allow the fuel cell to be operated at higher temperatures while avoiding dry out. The enthalpy exchanger includes a moisture permeable membrane which collects moisture from the exhaust flow and makes this moisture available to an incoming air stream, thus humidifying the incoming air stream. In addition, the waste heat from the fuel cell reactions is transferred to the incoming air stream. The exhaust stream from the anode can also be used to provide additional moisture and heat to the enthalpy exchanger to be added to the incoming air stream. A water separator is also provided in one embodiment.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 11, 2008
    Inventors: Charles M. Carlstrom, Russ Marvin, David DeAngelis, David H. Leach, Louis Schick
  • Publication number: 20080131753
    Abstract: A spring loaded direct oxidation fuel cell assembly reduces the effects of precompression relaxation. A near flat spring and a distribution plate form a spring assembly that is disposed between a membrane electrode assembly and one of the current collectors in the fuel cell. The components are assembled into a fuel cell assembly and are precompressed, and a spring yielding process is performed. While precompression is being applied, a set of pins and a plastic frame are insert molded around the fuel cell assembly to hold the components in place. Subsequently, as the precompression relaxes, the spring assembly forces act to maintain an evenly distributed compression on the MEA, thereby compensating for the loss of precompression. A related method of manufacturing a fuel cell assembly is provided.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Inventors: Constantinos Minas, Megan A. Fannon, Russ Marvin, Charles M. Carlstrom, Robert S. Hirsch, Sampath Venkataswamy
  • Publication number: 20080090107
    Abstract: An integrated thermal management of an electrochemical energy conversion device (e.g., a fuel cell) and an electronic device powered by the electrochemical energy conversion device is described. According to the present invention, an integrated thermal management interface may be used to intentionally manage and control the heat generated by both devices in a shared and efficient manner (e.g., in addition to natural heat dissipation). In particular, the interface may be a unified sub-system, which may be electrical or mechanical (or a combination of both), used to actively control the heat of the two distinct devices, i.e., the heat-generating portions of the two devices, by creating a thermally conductive path to a shared heat dissipation mechanism. In accordance with aspects of the present invention, the interface may be embodied as one or more shared thermally conductive paths, fans, air pumps, heat sinks, switches, etc.
    Type: Application
    Filed: October 13, 2006
    Publication date: April 17, 2008
    Inventors: John Perry Scartozzi, James K. Prueitt, Ashish K. Modi, Charles M. Carlstrom
  • Patent number: 7306869
    Abstract: A wide-area electrostatically-actuated shutter is provided that includes a thin, flexible, diaphragm that is placed between two rigid electrode structures. In one embodiment of the invention, the diaphragm has a set of openings in it. These openings overlap with corresponding openings in one of the rigid electrodes such that when the diaphragm is contiguous to that electrode, the openings provide apertures through which vaporous fuel can flow. The opposite electrode does not have overlapping openings, thus it forms a seal that prevents gas or vapor from passing through it when the diaphragm is in contact with the opposite electrode. The shutter is actuated electrostatically by an associated driver that applies a voltage to the diaphragm such that when the high voltage is applied to the diaphragm, the diaphragm is attracted to the fixed electrode that is tied to ground.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: December 11, 2007
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: David H. Leach, Charles M. Carlstrom, Jr.
  • Patent number: 7029784
    Abstract: The invention provides a layered design for a fuel cell flow field plate. A flow field plate is formed by mating at least two interlocking layers that form an internal fluid channel between them. The internal fluid channel is generally used to circulate a coolant through the fuel cell. Such plates can be manufactured from a variety of materials including carbon composites and metals, and can be used with a variety of fuel cell configurations, including PEM and other types of fuel cells.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: April 18, 2006
    Assignee: Plug Power Inc.
    Inventor: Charles M. Carlstrom
  • Publication number: 20030224239
    Abstract: The invention provides a layered design for a fuel cell flow field plate. A flow field plate is formed by mating at least two interlocking layers that form an internal fluid channel between them. The internal fluid channel is generally used to circulate a coolant through the fuel cell. Such plates can be manufactured from a variety of materials including carbon composites and metals, and can be used with a variety of fuel cell configurations, including PEM and other types of fuel cells.
    Type: Application
    Filed: May 30, 2002
    Publication date: December 4, 2003
    Applicant: Plug Power Inc.
    Inventor: Charles M. Carlstrom
  • Patent number: 6500580
    Abstract: A fluid flow plate for a fuel cell includes a first face and a fluid manifold opening for receiving a fluid and at least one flow channel defined within the first face for distributing a reactant in the fuel cell. A dive through hole is defined in and extends through the fluid flow plate. The dive through hole is fluidly connected to the fluid manifold opening by an inlet channel, defined within an opposite face of the plate. The dive through hole and the inlet channel facilitate transmission of a portion of the fluid to the flow channel. A groove, adapted to receive a sealing member, is also defined within the first face and/or the opposite face. The sealing member may comprise a gasket which seals the respective fluid manifolds, thereby preventing leaking of fluid.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: December 31, 2002
    Assignee: Plug Power Inc.
    Inventors: Russel H. Marvin, Charles M. Carlstrom, Jr.