Patents by Inventor Charles Middleton

Charles Middleton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220362383
    Abstract: Liquid polymer pharmaceutical compositions with a biodegradable liquid polymer, a biocompatible solvent or combination or mixture of solvents and/or co-solvents, and an active pharmaceutical agent comprising a peptide are useful to provide extended long-term release of the drug to a subject and/or to improve the stability of the active pharmaceutical agent. In embodiments, the polymer may be initiated with a low-molecular weight polyethylene glycol and/or may be a block copolymer comprising a low-molecular weight polyethylene glycol block. In further embodiments, the liquid polymer pharmaceutical composition may include a divalent cation, which may be provided in the form of a metal salt.
    Type: Application
    Filed: September 28, 2020
    Publication date: November 17, 2022
    Inventors: Hima Bindu GOTTAM, Gerhard KUMMEROW CASAS, John Charles MIDDLETON, Avinash NANGIA
  • Publication number: 20220040201
    Abstract: Liquid polymer pharmaceutical compositions comprising a biodegradable liquid polymer, a biocompatible solvent system, and an active pharmaceutical ingredient (API) are disclosed. The compositions of the invention are useful for providing extended, long-term release of the API.
    Type: Application
    Filed: September 24, 2019
    Publication date: February 10, 2022
    Inventors: Amy Haller VAN HOVE, Garrett Shane GLOVER, John Charles MIDDLETON, Avinash NANGIA
  • Patent number: 10556999
    Abstract: Methods according to the present invention decolorize a polymer by mixing a solution of the polymer with a photocatalyst and exposing the mixture to ultraviolet light; by way of non-limiting example, the polymer may be a star polymer and the photocatalyst may be titanium dioxide. Methods according to the present invention also utilize a metal scavenger, in some embodiments a solid-phase metal scavenger, to remove a metal catalyst from a polymer solution; by way of non-limiting example, the metal catalyst may be a tin catalyst. The decolorization methods and the catalyst removal methods of the present invention may be practiced separately, sequentially in any order, or simultaneously.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: February 11, 2020
    Assignee: Tolmar, Inc.
    Inventors: Justin Drew Searcy, George Sal Lewis, John Charles Middleton
  • Publication number: 20190016860
    Abstract: Methods according to the present invention decolorize a polymer by mixing a solution of the polymer with a photocatalyst and exposing the mixture to ultraviolet light; by way of non-limiting example, the polymer may be a star polymer and the photocatalyst may be titanium dioxide. Methods according to the present invention also utilize a metal scavenger, in some embodiments a solid-phase metal scavenger, to remove a metal catalyst from a polymer solution; by way of non-limiting example, the metal catalyst may be a tin catalyst. The decolorization methods and the catalyst removal methods of the present invention may be practiced separately, sequentially in any order, or simultaneously.
    Type: Application
    Filed: January 26, 2017
    Publication date: January 17, 2019
    Inventors: Justin Drew SEARCY, George Sal LEWIS, John Charles MIDDLETON
  • Patent number: 9859678
    Abstract: A communications device may include a remote device having a first E/O modulator to modulate an optical carrier signal with an input signal having a first frequency, an optical waveguide coupled to the remote device, and a local device coupled to the optical waveguide. The local device may include an optical source to generate the optical carrier signal, a second E/O modulator to modulate the optical carrier signal with a reference signal to generate a modulated reference signal, an OIL source coupled to the second E/O modulator and to amplify the modulated reference signal, and an O/E converter coupled to the OIL source and to generate an output signal including a replica of the input signal at a second frequency based upon the reference signal.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: January 2, 2018
    Assignee: HARRIS CORPORATION
    Inventors: Charles Middleton, Richard DeSalvo, Scott L. Meredith, Peter S. Scheuter
  • Publication number: 20170026125
    Abstract: A communications device may include a remote device having a first E/O modulator to modulate an optical carrier signal with an input signal having a first frequency, an optical waveguide coupled to the remote device, and a local device coupled to the optical waveguide. The local device may include an optical source to generate the optical carrier signal, a second E/O modulator to modulate the optical carrier signal with a reference signal to generate a modulated reference signal, an OIL source coupled to the second E/O modulator and to amplify the modulated reference signal, and an O/E converter coupled to the OIL source and to generate an output signal including a replica of the input signal at a second frequency based upon the reference signal.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 26, 2017
    Inventors: Charles MIDDLETON, Richard DESALVO, Scott L. MEREDITH, Peter S. SCHEUTER
  • Patent number: 9116366
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source generating an optical carrier signal, and a modulator coupled to the tunable optical source and modulating the optical carrier signal with an RF input signal. The tunable RF filter device may include first and second optical waveguide paths coupled to the modulator and having first and second dispersion slopes of opposite sign from each other, one or more of the first and second optical waveguide paths comprising an optical splitter and combiner pair therein, and an optical-to-electrical converter coupled to the first and second optical waveguide paths and generating an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: August 25, 2015
    Assignee: HARRIS CORPORATION
    Inventors: Richard DeSalvo, Charles Middleton
  • Publication number: 20150125108
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source generating an optical carrier signal, and a modulator coupled to the tunable optical source and modulating the optical carrier signal with an RF input signal. The tunable RF filter device may include first and second optical waveguide paths coupled to the modulator and having first and second dispersion slopes of opposite sign from each other, one or more of the first and second optical waveguide paths comprising an optical splitter and combiner pair therein, and an optical-to-electrical converter coupled to the first and second optical waveguide paths and generating an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Application
    Filed: January 14, 2015
    Publication date: May 7, 2015
    Inventors: Richard DESALVO, Charles MIDDLETON
  • Patent number: 8971671
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source generating an optical carrier signal, and a modulator coupled to the tunable optical source and modulating the optical carrier signal with an RF input signal. The tunable RF filter device may include first and second optical waveguide paths coupled to the modulator and having first and second dispersion slopes of opposite sign from each other, one or more of the first and second optical waveguide paths comprising an optical splitter and combiner pair therein, and an optical-to-electrical converter coupled to the first and second optical waveguide paths and generating an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Patent number: 8897607
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: November 25, 2014
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Patent number: 8879919
    Abstract: A communications device includes a transmitter device having first and second optical sources and generating respective first and second modulated optical carrier signals at first and second optical carrier frequencies based upon an input signal. The communications device also includes an optical waveguide coupled to the transmitter device, and a receiver device coupled to the optical waveguide and including an FM-PM discriminator having a transfer function with a positive slope portion and a negative slope portion so that the first optical carrier frequency is positioned on the positive slope portion and the second optical carrier frequency is positioned on the negative slope portion.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 4, 2014
    Assignee: Harris Corporation
    Inventors: Robert C. Peach, Charles Middleton, Richard DeSalvo
  • Patent number: 8861971
    Abstract: A phased antenna array includes an array of antenna elements, and an electro-optic (EO) readout circuit coupled to the array of antenna elements. The EO readout circuit includes an optical source having a first wavelength division multiplexer (WDM) configured to generate an optical carrier signal including beam carrier wavelengths, a first EO modulator configured to modulate a signal from an antenna element based upon the optical carrier signal, a second WDM coupled downstream from the first EO modulator, and optical-to-electrical converters coupled downstream from the second WDM. The second WDM is configured to multiplex each modulated beam carrier wavelength to a respective optical-to-electrical converter.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 14, 2014
    Assignee: Harris Corporation
    Inventors: Charles Middleton, Alan Mast, Jay Kralovec, Richard DeSalvo, Gus W. Deibner
  • Patent number: 8842992
    Abstract: A communications device includes a transmitter device having an optical source configured to generate an optical carrier signal, a first E/O modulator coupled to the optical source and configured to modulate the optical carrier signal with an input signal having a first frequency, and a second E/O modulator coupled to the optical source and configured to modulate the optical carrier signal with a reference signal. The communications device includes an optical waveguide coupled to the transmitter device, and a receiver device coupled to the optical waveguide and including an O/E converter coupled to the optical waveguide and configured to generate an output signal comprising a replica of the input signal at a second frequency based upon the reference signal.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 23, 2014
    Assignee: Harris Corporation
    Inventors: Charles Middleton, Richard DeSalvo, Peter S. Scheuter
  • Patent number: 8620158
    Abstract: A communications device includes a transmitter device including first and second optical sources, a first optical coupler coupled to the first and second optical sources, and a first modulator coupled to the first optical coupler and to modulate a combined carrier signal including the first and second optical carrier signals with an RF input signal. The communications device includes a receiver device having a second modulator to further modulate the modulated combined carrier signal with an LO signal, a FM-PM discriminator coupled to the second modulator and to convert the modulated combined carrier signal to an intensity modulated combined carrier signal based upon the LO signal, a second optical coupler coupled to the FM-PM discriminator and to generate first and second intensity modulated carrier signals, and an optical-to-electrical converter coupled to the second optical coupler and to generate an IF signal.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: December 31, 2013
    Assignee: Harris Corporation
    Inventors: Robert C. Peach, Charles Middleton, Richard DeSalvo, Scott L. Meredith
  • Publication number: 20130236187
    Abstract: A communications device includes a transmitter device having an optical source configured to generate an optical carrier signal, a first E/O modulator coupled to the optical source and configured to modulate the optical carrier signal with an input signal having a first frequency, and a second E/O modulator coupled to the optical source and configured to modulate the optical carrier signal with a reference signal. The communications device includes an optical waveguide coupled to the transmitter device, and a receiver device coupled to the optical waveguide and including an O/E converter coupled to the optical waveguide and configured to generate an output signal comprising a replica of the input signal at a second frequency based upon the reference signal.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: HARRIS CORPORATION
    Inventors: Charles MIDDLETON, Richard DeSalvo, Peter S. Scheuter
  • Patent number: 8526817
    Abstract: A communications device includes a transmitter device having an optical source to generate an optical carrier signal, and a first modulator coupled to the optical source and to modulate the optical carrier signal with a radio frequency (RF) input signal, and an optical waveguide coupled to the transmitter device. The communications device includes a receiver device coupled to the optical waveguide and including a second modulator to further modulate the modulated optical carrier signal with a local oscillator (LO) signal, a frequency modulation-phase modulation (FM-PM) discriminator coupled to the second modulator and to convert the modulated optical carrier signal to an intensity modulated optical carrier signal based upon the LO signal, and an optical-to-electrical converter coupled to the FM-PM discriminator and to generate an intermediate frequency (IF) signal based upon the intensity modulated optical carrier signal.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: September 3, 2013
    Assignee: Harris Corporation
    Inventors: Charles Middleton, Richard DeSalvo, Scott L. Meredith, Robert C. Peach
  • Patent number: 8515285
    Abstract: A communications device includes a transmitter device including an optical source configured to generate an optical carrier signal, and a modulator coupled to the optical source and configured to modulate the optical carrier signal with an input signal having a first frequency, an optical waveguide coupled to the transmitter device, and a receiver device coupled to the optical waveguide. The receiver device includes an optical splitter, a first waveguide path coupled to the optical splitter and configured to filter a sideband from the modulated optical carrier signal, a second waveguide path coupled to the optical splitter and configured to generate a selected sideband from selectable sidebands based upon the modulated optical carrier signal, and an optical-to-electrical converter coupled to the first and second waveguide paths and configured to generate an output signal including a replica of the input signal at a second frequency based upon the selected sideband.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: August 20, 2013
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton, Peter S. Scheuter, Gus W. Deibner
  • Publication number: 20130202307
    Abstract: A phased antenna array includes a plurality of electro-optic (EO) circuits. Each EO circuit has a digital-to-analog converter (DAC) configured to receive a baseband signal, and an optical source configured to generate an optical signal. Each EO circuit also has an EO modulator coupled downstream of the DAC and to the optical source and configured to modulate an optical carrier signal based upon the baseband signal and the optical signal, and an optical combiner coupled downstream of the EO modulator and coupled to the optical source. In addition, there are a plurality of antenna circuits spaced apart from the plurality of EO circuits, each antenna circuit comprising at least one photodiode and an antenna element coupled thereto. Moreover, a plurality of optical fibers couple the plurality of EO circuits to the plurality of antenna circuits.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Applicant: Harris Corporation, Corporation of the State of Delaware
    Inventors: Charles Middleton, Alan Mast, Jay Kralovec, Richard Desalvo, Gus W. Deibner, Jeff Philo
  • Publication number: 20130202306
    Abstract: A phased antenna array includes a plurality of electro-optic (EO) circuits. Each EO circuit has a digital-to-analog converter (DAC) configured to receive a baseband signal, and an optical source comprising an optical source electro-optical (EO) modulator and configured to generate an optical signal. Each EO circuit also has an EO modulator coupled downstream of the DAC and to the optical source and configured to modulate an optical carrier signal based upon the baseband signal and the optical signal, and an optical combiner coupled downstream of the EO modulator and coupled to the optical source. In addition, there are a plurality of antenna circuits spaced apart from the plurality of EO circuits, each antenna circuit comprising at least one photodiode and an antenna element coupled thereto. Moreover, a plurality of optical fibers couple the plurality of EU circuits to the plurality of antenna circuits.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Applicant: Harris Corporation, Corporation of the State of Delaware
    Inventors: Charles MIDDLETON, Alan MAST, Jay KRALOVEC, Richard DESALVO, Gus W. DEIBNER, Jeff PHILO
  • Publication number: 20130202308
    Abstract: A phased antenna array includes a plurality of electro-optic (EO) circuits. Each EO circuit has a digital-to-analog converter (DAC) configured to receive a baseband signal, and an optical source comprising an opto-electronic oscillator configured to generate an optical signal. Each EO circuit also has an EO modulator coupled downstream of the DAC and to the optical source and configured to modulate an optical carrier signal based upon the baseband signal and the optical signal, and an optical combiner coupled downstream of the EO modulator and coupled to the optical source. In addition, there are a plurality of antenna circuits spaced apart from the plurality of EO circuits, each antenna circuit comprising at least one photodiode and an antenna element coupled thereto. Moreover, a plurality of optical fibers couple the plurality of EO circuits to the plurality of antenna circuits.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Applicant: Harris Corporation, Corporation of the State of Delaware
    Inventors: Charles Middleton, Alan Mast, Jay Kralovec, Richard Desalvo, Gus W. Deibner, Jeff Philo