Patents by Inventor Charles P. Sperling

Charles P. Sperling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11547360
    Abstract: Systems and methods include differential diagnosis for acute heart failure to provide treatment to a patient including determining whether the patient has cardiac volume overload, determining whether the patient has decreased abdominal venous system volume, and providing the appropriate treatment in response to the determinations. A multi-sensor system may be used to determine cardiac volume and abdominal venous system volume. Fluid redistribution treatment may be provided when cardiac volume overload is accompanied by a decrease in abdominal venous system volume. Fluid accumulation treatment may be provided when cardiac volume overload is not accompanied by a decrease in abdominal venous system volume.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: January 10, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Yong K. Cho, Tom D. Bennett, Douglas A. Hettrick, Charles P. Sperling, Paul A. Sobotka, Vinod Sharma, Eduardo N. Warman, Todd M. Zielinski
  • Publication number: 20210248922
    Abstract: A virtual reality training system and method enabling virtual bronchoscopic navigation of a virtual patient following a pathway plan to a target. The pathway plan presented on a computer depicted in the virtual environment and simulating an actual bronchoscopic navigation.
    Type: Application
    Filed: January 15, 2021
    Publication date: August 12, 2021
    Inventors: Brian C. Gordon, Milad D. Moin, Charles P. Sperling
  • Publication number: 20200196948
    Abstract: Systems and methods include differential diagnosis for acute heart failure to provide treatment to a patient including determining whether the patient has cardiac volume overload, determining whether the patient has decreased abdominal venous system volume, and providing the appropriate treatment in response to the determinations. A multi-sensor system may be used to determine cardiac volume and abdominal venous system volume. Fluid redistribution treatment may be provided when cardiac volume overload is accompanied by a decrease in abdominal venous system volume. Fluid accumulation treatment may be provided when cardiac volume overload is not accompanied by a decrease in abdominal venous system volume.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 25, 2020
    Inventors: Yong K. Cho, Tom D. Bennett, Douglas A. Hettrick, Charles P. Sperling, Paul A. Sobotka, Vinod Sharma, Eduardo N. Warman, Todd M. Zielinski
  • Patent number: 8372013
    Abstract: A method of determining a respiration parameter in a medical device in which pressure signals are sensed to generate corresponding sample points, and a breath detection threshold is continuously adjusted in response to the generated sample points to generate a current adjusted breath detection threshold. A current generated sample point is compared to the current adjusted breath detection threshold, and the continuous adjusting of the breath detection threshold is suspended and the breath detection threshold is equal to the most current adjusted breath detection threshold generated prior to the suspending in response to the comparing. A next sample point, generated subsequent to the suspending, is compared to the set breath detection threshold, and the respiration parameter is determined in response to the comparing of a next sample point to the set breath detection threshold.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: February 12, 2013
    Assignee: Medtronic, Inc.
    Inventors: Maneesh Shrivastav, Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling
  • Patent number: 8231536
    Abstract: A medical device for determining a respiratory effort having a pressure sensor to sense pressure signals, a housing having system components positioned therein, and a microprocessor positioned within the housing, wherein the microprocessor detects an inspiration and an expiration in response to the pressure signals, detects a breath in response to the detected inspiration and the detected expiration, and determines the respiratory effort in response to the detected breath.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: July 31, 2012
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Patent number: 8202223
    Abstract: A method of determining respiratory effort in a medical device in which pressure signals are sensed to generate corresponding sample points, an inspiration and an expiration are detected in response to the sensed pressure signals, a breath is detected in response to the detected inspiration and the detected expiration, and the respiratory effort is determined in response to the detected breath.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: June 19, 2012
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Patent number: 8047999
    Abstract: A system and method for filtering a pressure signal in a medical device in which a sensor terminal senses the pressure signal, an electrode terminal receives cardiac electrical signals, a signal filtering system filters the sensed pressure signal in response to a determined heart rate to generate a heart-rate dependent frequency response, and a microprocessor derives a respiration signal in response to the heart rate dependent frequency response, and determines metrics of hemodynamic function in response to the derived respiration signal.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: November 1, 2011
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Publication number: 20100076324
    Abstract: A medical device for determining a respiratory effort having a pressure sensor to sense pressure signals, a housing having system components positioned therein, and a microprocessor positioned within the housing, wherein the microprocessor detects an inspiration and an expiration in response to the pressure signals, detects a breath in response to the detected inspiration and the detected expiration, and determines the respiratory effort in response to the detected breath.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Publication number: 20100076323
    Abstract: An apparatus for determining a respiration parameter in a medical device in which a pressure sensor senses pressure signals, and a signal processor, coupled to the pressure sensor, receives the sensed pressure signals and generates corresponding sample points.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Maneesh Shrivastav, Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Publication number: 20100076514
    Abstract: A system and method for filtering a pressure signal in a medical device in which a sensor terminal senses the pressure signal, an electrode terminal receives cardiac electrical signals, a signal filtering system filters the sensed pressure signal in response to a determined heart rate to generate a heart-rate dependent frequency response, and a microprocessor derives a respiration signal in response to the heart rate dependent frequency response, and determines metrics of hemodynamic function in response to the derived respiration signal.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Publication number: 20100076322
    Abstract: A method of determining a respiration parameter in a medical device in which pressure signals are sensed to generate corresponding sample points, and a breath detection threshold is continuously adjusted in response to the generated sample points to generate a current adjusted breath detection threshold. A current generated sample point is compared to the current adjusted breath detection threshold, and the continuous adjusting of the breath detection threshold is suspended and the breath detection threshold is equal to the most current adjusted breath detection threshold generated prior to the suspending in response to the comparing. A next sample point, generated subsequent to the suspending, is compared to the set breath detection threshold, and the respiration parameter is determined in response to the comparing of a next sample point to the set breath detection threshold.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Maneesh A. Shrivastav, Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling
  • Publication number: 20100076325
    Abstract: A method of determining respiratory effort in a medical device in which pressure signals are sensed to generate corresponding sample points, an inspiration and an expiration are detected in response to the sensed pressure signals, a breath is detected in response to the detected inspiration and the detected expiration, and the respiratory effort is determined in response to the detected breath.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey