Patents by Inventor Charles V. Stancampiano

Charles V. Stancampiano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8158453
    Abstract: A CMOS active pixel sensor (APS) cell structure having dual workfunction transfer gate device and method of fabrication. The transfer gate device comprises a dielectric layer formed on a substrate and a dual workfunction gate conductor layer formed on the dielectric layer comprising a first conductivity type doped region and an abutting second conductivity type doped region. The transfer gate device defines a channel region where charge accumulated by a photosensing device is transferred to a diffusion region. A silicide structure is formed atop the dual workfunction gate conductor layer for electrically coupling the first and second conductivity type doped regions. In one embodiment, the silicide contact is smaller in area dimension than an area dimension of said dual workfunction gate conductor layer. Presence of the silicide strap prevents the diodic behavior from allowing one or the other side of the gate to float to an indeterminate voltage.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: April 17, 2012
    Assignees: International Business Machines Corporation, Omnivision Technologies, Inc.
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, R. Michael Guidash, Mark D. Jaffe, Edward T. Nelson, Richard J. Rassel, Charles V. Stancampiano
  • Patent number: 7973836
    Abstract: A method for lowering dark current in an image sensor pixel, the method includes the steps of providing a photosensitive area for receiving incident light which is converted into a charge; providing a gate for transferring charge from the photosensitive area; wherein the gate is held at a voltage which will accumulate majority carriers at a semiconductor-dielectric interface during integration for the photosensitive area. Alternatively, a potential profile can be provided under the gate to drain the dark current away from the photogeneration diffusion.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: July 5, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: R. Daniel McGrath, Edward T. Nelson, Robert M. Guidash, Charles V. Stancampiano, James P. Lavine
  • Publication number: 20100136733
    Abstract: A CMOS active pixel sensor (APS) cell structure having dual workfunction transfer gate device and method of fabrication. The transfer gate device comprises a dielectric layer formed on a substrate and a dual workfunction gate conductor layer formed on the dielectric layer comprising a first conductivity type doped region and an abutting second conductivity type doped region. The transfer gate device defines a channel region where charge accumulated by a photosensing device is transferred to a diffusion region. A silicide structure is formed atop the dual workfunction gate conductor layer for electrically coupling the first and second conductivity type doped regions. In one embodiment, the silicide contact is smaller in area dimension than an area dimension of said dual workfunction gate conductor layer. Presence of the silicide strap prevents the diodic behavior from allowing one or the other side of the gate to float to an indeterminate voltage.
    Type: Application
    Filed: February 3, 2010
    Publication date: June 3, 2010
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, EASTMAN KODAK COMPANY
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, R. Michael Guidash, Mark D. Jaffe, Edward T. Nelson, Richard J. Rassel, Charles V. Stancampiano
  • Patent number: 7675097
    Abstract: A CMOS active pixel sensor (APS) cell structure having dual workfunction transfer gate device and method of fabrication. The transfer gate device comprises a dielectric layer formed on a substrate and a dual workfunction gate conductor layer formed on the dielectric layer comprising a first conductivity type doped region and an abutting second conductivity type doped region. The transfer gate device defines a channel region where charge accumulated by a photosensing device is transferred to a diffusion region. A silicide structure is formed atop the dual workfunction gate conductor layer for electrically coupling the first and second conductivity type doped regions. In one embodiment, the silicide contact is smaller in area dimension than an area dimension of said dual workfunction gate conductor layer. Presence of the silicide strap prevents the diodic behavior from allowing one or the other side of the gate to float to an indeterminate voltage.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: March 9, 2010
    Assignees: International Business Machines Corporation, Eastman Kodak Company
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, R. Michael Guidash, Mark D. Jaffe, Edward T. Nelson, Richard J. Rassel, Charles V. Stancampiano
  • Publication number: 20080128767
    Abstract: A CMOS active pixel sensor (APS) cell structure having dual workfunction transfer gate device and method of fabrication. The transfer gate device comprises a dielectric layer formed on a substrate and a dual workfunction gate conductor layer formed on the dielectric layer comprising a first conductivity type doped region and an abutting second conductivity type doped region. The transfer gate device defines a channel region where charge accumulated by a photosensing device is transferred to a diffusion region. A silicide structure is formed atop the dual workfunction gate conductor layer for electrically coupling the first and second conductivity type doped regions. In one embodiment, the silicide contact is smaller in area dimension than an area dimension of said dual workfunction gate conductor layer. Presence of the silicide strap prevents the diodic behavior from allowing one or the other side of the gate to float to an indeterminate voltage.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 5, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, EASTMAN KODAK COMPANY
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, R. Michael Guidash, Mark D. Jaffe, Edward T. Nelson, Richard J. Rassel, Charles V. Stancampiano
  • Patent number: 6351001
    Abstract: A charge-coupled device (CCD) image sensor that preserves defect gettering characteristics having a vertical overflow drain (VOD) for blooming protection is provided in a structure that provides low voltage electronic shuttering. This structure reduces the electronic shutter voltage to ease the demands on off-chip support circuitry required to operate the CCD image sensor. The invention provides an improved pixel structure to reduce this voltage. Prior art difficulties are avoided by providing uniform, n-type layers of varying doping levels underneath the entire area of the CCD device. Combined with a lightly doped n-type substrate these layers provide low voltage electronic shutter operation.
    Type: Grant
    Filed: April 17, 1996
    Date of Patent: February 26, 2002
    Assignee: Eastman Kodak Company
    Inventors: Eric G. Stevens, James P. Lavine, Charles V. Stancampiano
  • Patent number: 5530475
    Abstract: A method and apparatus for generating timing signals within the sensor in an imaging system by making provisions internally within a sensor that allows the sensor to generate the timing signals which are then output to the system to control the image sensor timing This alleviates the system from the responsibility of counting pixels and lines. The sensor will give at predetermined times, outputs which have the same wave form as the normal video output but with a much higher amplitude than the maximum video output recognized by the image processing system. These output signals will identify the end of the line and likewise will identify the end of the frame (or field). The resulting sensor can maintain its own timing sequence accurately tracking the time for lines and frame readout.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: June 25, 1996
    Assignee: Eastman Kodak Company
    Inventors: Ram Kannegundla, Charles V. Stancampiano
  • Patent number: 5235412
    Abstract: There is disclosed an electronic imaging system employing a high efficiency CCD imaging unit and a plurality of unique analog signal processors (ASP's). The ASP's operate in unison for receiving a first color sequence, such as cyan (C), yellow (Y), and green (G), of color-component pixel image signals from the CCD unit and for providing respective output image signals of a second sequence of color components such as blue (B), red (R), and green (G), having proper white balance for combining into a high definition full color image. The dark background or zero level of the output image signals is referenced to a common "dark" reference voltage to minimize dark background variations in the combined color image. Each ASP is substantially identical and has a unique architecture which facilitates its implementation as an integrated circuit. The ASP has a dynamic range of substantially better than 8-bits and provides for a wide range of signal sample rates (e.g., 1 to 40 MHz).
    Type: Grant
    Filed: August 17, 1992
    Date of Patent: August 10, 1993
    Assignee: Eastman Kodak Company
    Inventors: David M. Boisvert, Charles V. Stancampiano
  • Patent number: 4992392
    Abstract: A virtual phase CCD is fabricated in a semiconductor substrate of n-type conductivity having a layer of silicon dioxide on a surface by first forming a channel region by the implantation of boron ions. Masking regions of polycrystalline silicon are then formed on the silicon dioxide over and spaced along the channel region. Boron ions are then implanted into the substrate between the masking regions. The size of the masking regions are then increased by the addition of portions of a first photoresist layer to decrease the spacing along the channel region between the masking regions. Arsenic ions are then implanted into the channel region between the masking regions to form virtual gate regions along the surface of the channel reigon. Boron ions are then implanted into the substrate between the masking regions. The size of the masking regions is then further increased by the addition of a second photoresist layer to further decrease the spacing between the masking regions along the channel region.
    Type: Grant
    Filed: December 28, 1989
    Date of Patent: February 12, 1991
    Assignee: Eastman Kodak Company
    Inventors: David N. Nichols, Constantine Anagnostopoulos, Charles V. Stancampiano
  • Patent number: 3970965
    Abstract: Various injection locking arrangements employing Josephson oscillators are disclosed for achieving signal amplification, frequency conversion and the detection of extremely low level signals at high frequency ranges.
    Type: Grant
    Filed: March 26, 1975
    Date of Patent: July 20, 1976
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Sidney Shapiro, Charles V. Stancampiano