Patents by Inventor Che-Min Chu

Che-Min Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10950557
    Abstract: A manufacturing method of a stacked chip package structure includes the following steps. A first chip is disposed on a carrier, wherein the first chip has a first active surface and a plurality of first pads disposed on the first active surface. A second chip is disposed on the first chip without covering the first pads and has a second active surface and a plurality of second pads disposed on the second active surface. A plurality of first stud bumps are formed on the first pads. A plurality of pillar bumps are formed on the second pads. The first chip and the second chip are encapsulated by an encapsulant, wherein the encapsulant exposes a top surface of each second stud bump. A plurality of first vias are formed by a laser process, wherein the first vias penetrate the encapsulant and expose the first stud bumps. A conductive layer is formed in the first vias to form a plurality of first conductive vias. The carrier is removed.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: March 16, 2021
    Assignee: Powertech Technology Inc.
    Inventors: Li-Chih Fang, Ji-Cheng Lin, Che-Min Chu, Chun-Te Lin, Chien-Wen Huang
  • Publication number: 20200176395
    Abstract: A manufacturing method of a stacked chip package structure includes the following steps. A first chip is disposed on a carrier, wherein the first chip has a first active surface and a plurality of first pads disposed on the first active surface. A second chip is disposed on the first chip without covering the first pads and has a second active surface and a plurality of second pads disposed on the second active surface. A plurality of first stud bumps are formed on the first pads. A plurality of pillar bumps are formed on the second pads. The first chip and the second chip are encapsulated by an encapsulant, wherein the encapsulant exposes a top surface of each second stud bump. A plurality of first vias are formed by a laser process, wherein the first vias penetrate the encapsulant and expose the first stud bumps. A conductive layer is formed in the first vias to form a plurality of first conductive vias. The carrier is removed.
    Type: Application
    Filed: February 4, 2020
    Publication date: June 4, 2020
    Applicant: Powertech Technology Inc.
    Inventors: Li-Chih Fang, Ji-Cheng Lin, Che-Min Chu, Chun-Te Lin, Chien-Wen Huang
  • Patent number: 10607860
    Abstract: A package structure including a die, a plurality of first conductive connectors, a second conductive connector electrically insulated from the die, a redistribution layer and a conductive shield is provided. The die includes an active surface, a back surface opposite the active surface, and a sidewall coupling the active surface to the back surface. The first conductive connectors are disposed on the active surface of the die and electrically connected to the die. The second conductive connector is disposed on the die and aside the first conductive connectors. The redistribution layer is disposed on the die and electrically connected to the first conductive connectors and the second conductive connector. The conductive shield coupled to the redistribution layer surrounds the second conductive connector and at least a portion of the sidewall. The die is electrically insulated to the conductive shield. A chip package structure is also provided.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: March 31, 2020
    Assignee: Powertech Technology Inc.
    Inventors: Chia-Wei Chiang, Li-Chih Fang, Ji-Cheng Lin, Che-Min Chu, Chun-Te Lin
  • Patent number: 10276510
    Abstract: A manufacturing method of a package structure including the following steps is provided. A plurality of first conductive connectors and a second conductive connector on an active surface of a die are formed. The first conductive connectors are electrically connected to the die. The second conductive connector is formed aside the first conductive connectors and electrically insulated to the die. A redistribution layer is formed on the die. The redistribution layer is electrically connected to the first conductive connectors and the second conductive connector. A conductive shield is formed on the redistribution layer to surround the second conductive connector and at least a portion of a sidewall of the die coupled the active surface. The die is electrically insulated from the conductive shield. Another manufacturing method of a package structure is also provided.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: April 30, 2019
    Assignee: Powertech Technology Inc.
    Inventors: Chia-Wei Chiang, Li-Chih Fang, Ji-Cheng Lin, Che-Min Chu, Chun-Te Lin
  • Patent number: 10276575
    Abstract: The present disclosure provides an FET structure including a transistor of a first conductive type. The transistor includes a substrate having a region of a second conductive type, a channel between source and drain, and a gate over the channel. The channel includes dopants of the first conductive type. The gate includes a work function setting layer of the second conductive type. The present disclosure also provides a method for manufacturing an FET with multi-threshold voltages scheme. The method includes exposing channels of a first transistor of a first conductive type and a first transistor of a second conductive type from a first mask, doping the channels with dopants of the first conductive type, exposing channels of a second transistor of the first conductive type and a second conductive type from a second mask, and doping the channels with dopants of the second conductive type.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Amey Mahadev Walke, Chi-Hsun Hsieh, Che-Min Chu, Yu-Hsuan Kuo
  • Publication number: 20190096821
    Abstract: A manufacturing method of a package structure including the following steps is provided. A plurality of first conductive connectors and a second conductive connector on an active surface of a die are formed. The first conductive connectors are electrically connected to the die. The second conductive connector is formed aside the first conductive connectors and electrically insulated to the die. A redistribution layer is formed on the die. The redistribution layer is electrically connected to the first conductive connectors and the second conductive connector. A conductive shield is formed on the redistribution layer to surround the second conductive connector and at least a portion of a sidewall of the die coupled the active surface. The die is electrically insulated from the conductive shield. Another manufacturing method of a package structure is also provided.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Applicant: Powertech Technology Inc.
    Inventors: Chia-Wei Chiang, Li-Chih Fang, Ji-Cheng Lin, Che-Min Chu, Chun-Te Lin
  • Publication number: 20190096699
    Abstract: A package structure including a die, a plurality of first conductive connectors, a second conductive connector electrically insulated from the die, a redistribution layer and a conductive shield is provided. The die includes an active surface, a back surface opposite the active surface, and a sidewall coupling the active surface to the back surface. The first conductive connectors are disposed on the active surface of the die and electrically connected to the die. The second conductive connector is disposed on the die and aside the first conductive connectors. The redistribution layer is disposed on the die and electrically connected to the first conductive connectors and the second conductive connector. The conductive shield coupled to the redistribution layer surrounds the second conductive connector and at least a portion of the sidewall. The die is electrically insulated to the conductive shield. A chip package structure is also provided.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Applicant: Powertech Technology Inc.
    Inventors: Chia-Wei Chiang, Li-Chih Fang, Ji-Cheng Lin, Che-Min Chu, Chun-Te Lin
  • Publication number: 20180090497
    Abstract: The present disclosure provides an FET structure including a transistor of a first conductive type. The transistor includes a substrate having a region of a second conductive type, a channel between source and drain, and a gate over the channel. The channel includes dopants of the first conductive type. The gate includes a work function setting layer of the second conductive type. The present disclosure also provides a method for manufacturing an FET with multi-threshold voltages scheme. The method includes exposing channels of a first transistor of a first conductive type and a first transistor of a second conductive type from a first mask, doping the channels with dopants of the first conductive type, exposing channels of a second transistor of the first conductive type and a second conductive type from a second mask, and doping the channels with dopants of the second conductive type.
    Type: Application
    Filed: December 4, 2017
    Publication date: March 29, 2018
    Inventors: Amey Mahadev Walke, Chi-Hsun Hsieh, Che-Min Chu, Yu-Hsuan Kuo
  • Patent number: 9837416
    Abstract: The present disclosure provides an FET structure including a transistor of a first conductive type. The transistor includes a substrate having a region of a second conductive type, a channel between source and drain, and a gate over the channel. The channel includes dopants of the first conductive type. The gate includes a work function setting layer of the second conductive type. The present disclosure also provides a method for manufacturing an FET with multi-threshold voltages scheme. The method includes exposing channels of a first transistor of a first conductive type and a first transistor of a second conductive type from a first mask, doping the channels with dopants of the first conductive type, exposing channels of a second transistor of the first conductive type and a second conductive type from a second mask, and doping the channels with dopants of the second conductive type.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: December 5, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Amey Mahadev Walke, Chi-Hsun Hsieh, Che-Min Chu, Yu-Hsuan Kuo
  • Patent number: 9825010
    Abstract: A stacked chip package structure includes a first chip, pillar bumps, a first encapsulant, a first redistribution layer, a second chip, a second encapsulant, a second redistribution layer and a through via. The pillar bumps are disposed on a plurality of first pads of the first chip respectively. The first encapsulant encapsulates the first chip and exposes the pillar bumps. The first redistribution layer is disposed on the first encapsulant and electrically connects the first chip. The second chip is disposed on the first redistribution layer. The second encapsulant encapsulates the second chip. The second redistribution layer is disposed on the second encapsulant and electrically coupled to the second chip. The through via penetrates the second encapsulant and electrically connects the first redistribution layer and the second redistribution layer.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: November 21, 2017
    Assignee: Powertech Technology Inc.
    Inventors: Li-Chih Fang, Ji-Cheng Lin, Che-Min Chu, Chun-Te Lin, Chien-Wen Huang
  • Publication number: 20170287874
    Abstract: A stacked chip package structure includes a first chip, pillar bumps, a first encapsulant, a first redistribution layer, a second chip, a second encapsulant, a second redistribution layer and a through via. The pillar bumps are disposed on a plurality of first pads of the first chip respectively. The first encapsulant encapsulates the first chip and exposes the pillar bumps. The first redistribution layer is disposed on the first encapsulant and electrically connects the first chip. The second chip is disposed on the first redistribution layer. The second encapsulant encapsulates the second chip. The second redistribution layer is disposed on the second encapsulant and electrically coupled to the second chip. The through via penetrates the second encapsulant and electrically connects the first redistribution layer and the second redistribution layer.
    Type: Application
    Filed: March 10, 2017
    Publication date: October 5, 2017
    Applicant: Powertech Technology Inc.
    Inventors: Li-Chih Fang, Ji-Cheng Lin, Che-Min Chu, Chun-Te Lin, Chien-Wen Huang
  • Publication number: 20170287870
    Abstract: A stacked chip package structure includes a first chip, stud bumps, a second chip, pillar bumps, an encapsulant and conductive vias. The first stud bumps are respectively disposed on a plurality of first pads of the first chip, wherein each first stud bump includes a rough surface, and the rough surface of each first stud bump is rougher than a top surface of each first pad. The second chip is disposed on the first chip and exposes the first pads. The pillar bumps are respectively disposed on a plurality of second pads of the second chips. The encapsulant encapsulates the first chip and the second chip and exposes a top surface of each second stud bump. The first conductive vias penetrate the encapsulant and connect the first stud bumps. Each first conductive via covers the rough surface of each first stud bump.
    Type: Application
    Filed: March 10, 2017
    Publication date: October 5, 2017
    Applicant: Powertech Technology Inc.
    Inventors: Li-Chih Fang, Ji-Cheng Lin, Che-Min Chu, Chun-Te Lin, Chien-Wen Huang
  • Publication number: 20170033106
    Abstract: The present disclosure provides an FET structure including a transistor of a first conductive type. The transistor includes a substrate having a region of a second conductive type, a channel between source and drain, and a gate over the channel. The channel includes dopants of the first conductive type. The gate includes a work function setting layer of the second conductive type. The present disclosure also provides a method for manufacturing an FET with multi-threshold voltages scheme. The method includes exposing channels of a first transistor of a first conductive type and a first transistor of a second conductive type from a first mask, doping the channels with dopants of the first conductive type, exposing channels of a second transistor of the first conductive type and a second conductive type from a second mask, and doping the channels with dopants of the second conductive type.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 2, 2017
    Inventors: AMEY MAHADEV WALKE, CHI-HSUN HSIEH, CHE-MIN CHU, YU-HSUAN KUO
  • Publication number: 20160296049
    Abstract: A cup with anti-slipping and heat insulation effect has a body and a surrounding slice. The body has a surrounding wall. The surrounding slice is mounted around the surrounding wall and has an external surface and multiple protrusions. The multiple protrusions are formed on the external surface of the surrounding slice. The multiple protrusions are staggeredly disposed into regular grids. Multiple intervals are formed between the surrounding slice and the surrounding wall, and each interval is hollow. The multiple protrusions can increase the anti-slipping effect, such that the users may hold the surrounding slice stably. The cup has a good heat insulation effect because the multiple intervals are formed between the surrounding slice and the surrounding wall.
    Type: Application
    Filed: July 30, 2015
    Publication date: October 13, 2016
    Inventor: CHE-MIN CHU
  • Patent number: 8853834
    Abstract: Disclosed is a leadframe-type semiconductor package having an EMI shielding layer connected to ground, comprising a leadframe, a chip, an encapsulant, and an EMI shielding layer. The encapsulant has two lead-extending sides and two leadless sides. The EMI shielding layer covers at least one surface of the encapsulant and the leadless sides. A metal tie bar coupling to the die attach pad of the leadframe has a cut end aligned with and exposed on one of the leadless sides. A ground lead also has a cut end aligned with and exposed on one of the leadless sides Since the EMI shielding layer covers and electrically connects the cut ends of the metal tie bar and the ground lead, the die pad with its metal tie bar of the leadframe is connected to the ground lead through external electrical connection outside the encapsulant to allow the die pad having ground potential.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: October 7, 2014
    Assignee: Powertech Technology Inc.
    Inventors: Wen-Jeng Fan, Che-Min Chu, Ming-Yen Wu
  • Publication number: 20140167231
    Abstract: Disclosed is a leadframe-type semiconductor package having an EMI shielding layer connected to ground, comprising a leadframe, a chip, an encapsulant, and an EMI shielding layer. The encapsulant has two lead-extending sides and two leadless sides. The EMI shielding layer covers at least one surface of the encapsulant and the leadless sides. A metal tie bar coupling to the die attach pad of the leadframe has a cut end aligned with and exposed on one of the leadless sides. A ground lead also has a cut end aligned with and exposed on one of the leadless sides Since the EMI shielding layer covers and electrically connects the cut ends of the metal tie bar and the ground lead, the die pad with its metal tie bar of the leadframe is connected to the ground lead through external electrical connection outside the encapsulant to allow the die pad having ground potential.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: POWERTECH TECHNOLOGY INC.
    Inventors: Wen-Jeng FAN, Che-Min CHU, Ming-Yen WU
  • Patent number: 8541870
    Abstract: Disclosed is a semiconductor package utilizing a tape to reinforce fixing of leads to a die pad having a through hole. The package primarily comprises a leadframe having the plurality of leads and the die pad, a tape, at least a chip, and an encapsulant. The die pad. The tape is attached beneath the leadframe adjacent to the inner fingers of the leads to fix the leads and the die pad for wire-bonding. Additionally, the tape does not completely cover the through hole. The chip is disposed on the leads and the die pad and electrically connected to the inner fingers. The encapsulant encapsulates the die pad, the tape and the chip with the leads being insulatedly bonded where the encapsulant further completely fills into the through hole through its opening without completely covered by the tape.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: September 24, 2013
    Assignee: PowerTech Technology Inc.
    Inventors: Wen-Jeng Fan, Che-Min Chu, Wei-Min Chen
  • Patent number: 8278179
    Abstract: A method of forming a semiconductor structure includes providing a substrate including a fin at a surface of the substrate, and forming a fin field-effect transistor (FinFET), which further includes forming a gate stack on the fin; forming a thin spacer on a sidewall of the gate stack; and epitaxially growing a epitaxy region starting from the fin. After the step of epitaxially growing the epitaxy region, a main spacer is formed on an outer edge of the thin spacer. After the step of forming the main spacer, a deep source/drain implantation is performed to form a deep source/drain region for the FinFET.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: October 2, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Da-Wen Lin, Che-Min Chu, Tsung-Hung Li, Chih-Hung Tseng, Yen-Chun Lin, Chung-Cheng Wu
  • Publication number: 20110223736
    Abstract: A method of forming a semiconductor structure includes providing a substrate including a fin at a surface of the substrate, and forming a fin field-effect transistor (FinFET), which further includes forming a gate stack on the fin; forming a thin spacer on a sidewall of the gate stack; and epitaxially growing a epitaxy region starting from the fin. After the step of epitaxially growing the epitaxy region, a main spacer is formed on an outer edge of the thin spacer. After the step of forming the main spacer, a deep source/drain implantation is performed to form a deep source/drain region for the FinFET.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 15, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Da-Wen Lin, Che-Min Chu, Tsung-Hung Li, Chih-Hung Tseng, Yen-Chun Lin, Chung-Cheng Wu
  • Cup
    Patent number: D775896
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: January 10, 2017
    Assignee: GREENFACE PACKAGING LTD.
    Inventor: Che-Min Chu