Patents by Inventor Chen-Fang Chang

Chen-Fang Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170276074
    Abstract: An engine assembly includes a control module configured to receive a torque request and an engine configured to produce an output torque in response to the torque request. The control module includes a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for supervisory model predictive control. The control module includes a multi-layered structure with an upper-level (“UL”) optimizer module configured to optimize at least one system-level objective and a lower-level (“LL”) tracking control module configured to maintain at least one tracking parameter. The multi-layered structure is characterized by a decoupled cost function such that the UL optimizer module minimizes an upper-level cost function (CFUL) and the LL tracking control module minimizes a lower-level cost function (CFLL). The system-level objective may include minimizing fuel consumption of the engine and the tracking parameter may include delivering the torque requested to engine.
    Type: Application
    Filed: March 22, 2016
    Publication date: September 28, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ibrahim Haskara, Yiran Hu, Chen-Fang Chang
  • Patent number: 9771883
    Abstract: An engine assembly includes a control module configured to receive a torque request and an engine configured to produce an output torque in response to the torque request. The control module includes a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for supervisory model predictive control. The control module includes a multi-layered structure with an upper-level (“UL”) optimizer module configured to optimize at least one system-level objective and a lower-level (“LL”) tracking control module configured to maintain at least one tracking parameter. The multi-layered structure is characterized by a decoupled cost function such that the UL optimizer module minimizes an upper-level cost function (CFUL) and the LL tracking control module minimizes a lower-level cost function (CFLL). The system-level objective may include minimizing fuel consumption of the engine and the tracking parameter may include delivering the torque requested to engine.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: September 26, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Ibrahim Haskara, Yiran Hu, Chen-Fang Chang
  • Patent number: 9689321
    Abstract: An engine assembly includes an internal combustion engine with an engine block having at least one cylinder and at least one piston moveable within the at least one cylinder. A crankshaft is moveable to define a plurality of crank angles (CA) from a bore axis defined by the cylinder to a crank axis defined by the crankshaft. A controller is operatively connected to the internal combustion engine and configured to receive a torque request (TR). The controller is programmed to determine a desired combustion phasing (CAd) for controlling a torque output of the internal combustion engine. The desired combustion phasing is based at least partially on the torque request (TR) and a pressure-volume (PV) diagram of the at least one cylinder.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: June 27, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jun-Mo Kang, Orgun A. Guralp, Sai S. V. Rajagopalan, Hanho Yun, Chen-Fang Chang, Paul M. Najt
  • Patent number: 9689339
    Abstract: An engine assembly includes an internal combustion engine with an engine block having at least one cylinder. An intake manifold and an exhaust manifold are each fluidly connected to the at least one cylinder and define an intake manifold pressure (pi) and an exhaust manifold pressure (pe), respectively. A controller is operatively connected to the internal combustion engine and configured to receive a torque request (TR). The controller is programmed to determine a desired fuel mass (mf) for controlling a torque output of the internal combustion engine. The desired fuel mass (mf) is based at least partially on the torque request (TR), the intake and exhaust manifold pressures and a pressure-volume (PV) diagram of the at least one cylinder.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: June 27, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jun-Mo Kang, Orgun A. Guralp, Sai S. V. Rajagopalan, Hanho Yun, Chen-Fang Chang, Paul M. Najt
  • Patent number: 9644543
    Abstract: An engine assembly includes an intake manifold and a manifold absolute pressure sensor configured to generate a current measured manifold absolute pressure (MAPM) signal for the intake manifold. The assembly includes a throttle valve adjustable to control airflow to the intake manifold and a throttle position sensor configured to generate a current measured throttle position (TPM) signal. A controller is operatively connected to the throttle valve and the manifold absolute pressure sensor and has a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for determining a predicted manifold absolute pressure (MAPP). Execution of the instructions by the processor causes the controller to determine the predicted manifold absolute pressure (MAPP) based at least partially on a predicted throttle flow (TFP) and the current measured manifold absolute pressure (MAPM) signal.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: May 9, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Yiran Hu, Ibrahim Haskara, Shifang Li, Sai S. V. Rajagopalan, Steven E Muldoon, Chen-Fang Chang
  • Patent number: 9617930
    Abstract: The method can control a powertrain in order to maintain the charge temperature at a desired value regardless of exhaust manifold pressure or altitude. The method includes the following steps: (a) receiving a torque request; (b) determining a desired air charge based, a least in part, on the torque request; (c) determining an actual air charge based, at least in part, on input signals from a manifold absolute pressure (MAP) sensor and a mass airflow (MAF) sensor; (d) adjusting an intake valve timing of the intake valve such that the actual air charge is equal to a desired air charge, and (e) adjusting throttle position and actuator positions of boosting devices such that the actual intake manifold pressure is equal to the desired intake manifold pressure.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: April 11, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jun-Mo Kang, Orgun A. Guralp, Hanho Yun, Sai S. V. Rajagopalan, Chen-Fang Chang, Paul M. Najt
  • Publication number: 20160363085
    Abstract: An engine assembly includes an internal combustion engine with an engine block having at least one cylinder. An intake manifold and an exhaust manifold are each fluidly connected to the at least one cylinder and define an intake manifold pressure (pi) and an exhaust manifold pressure (pe), respectively. A controller is operatively connected to the internal combustion engine and configured to receive a torque request (TR). The controller is programmed to determine a desired fuel mass (mf) for controlling a torque output of the internal combustion engine. The desired fuel mass (mf) is based at least partially on the torque request (TR), the intake and exhaust manifold pressures and a pressure-volume (PV) diagram of the at least one cylinder.
    Type: Application
    Filed: June 10, 2015
    Publication date: December 15, 2016
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jun-Mo Kang, Orgun A. Guralp, Sai S.V. Rajagopalan, Hanho Yun, Chen-Fang Chang, Paul M. Najt
  • Publication number: 20160363059
    Abstract: An engine assembly includes an internal combustion engine with an engine block having at least one cylinder and at least one piston moveable within the at least one cylinder. A crankshaft is moveable to define a plurality of crank angles (CA) from a bore axis defined by the cylinder to a crank axis defined by the crankshaft. A controller is operatively connected to the internal combustion engine and configured to receive a torque request (TR). The controller is programmed to determine a desired combustion phasing (CAd) for controlling a torque output of the internal combustion engine. The desired combustion phasing is based at least partially on the torque request (TR) and a pressure-volume (PV) diagram of the at least one cylinder.
    Type: Application
    Filed: June 10, 2015
    Publication date: December 15, 2016
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jun-Mo Kang, Orgun A. Guralp, Sai S.V. Rajagopalan, Hanho Yun, Chen-Fang Chang, Paul M. Najt
  • Patent number: 9488121
    Abstract: A method for estimating the volumetric efficiency in an internal combustion engine in real time includes the following steps: (a) monitoring an oxygen percentage of gases in the intake manifold using an oxygen sensor coupled to an intake manifold; and (b) determining, via a control module, a volumetric efficiency of the internal combustion engine in real time based, at least in part, on the oxygen percentage of the gases in the intake manifold.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: November 8, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Yongjie Zhu, Jun-Mo Kang, Chen-Fang Chang
  • Patent number: 9482164
    Abstract: A system includes a turbocharged engine, sensors, and a controller. The engine includes an engine intake manifold, air intake manifold, a compressor, a first aftercooler device, a throttle that admits cooled compressed air to the engine intake manifold, and cylinders. The sensors determine engine status signals and include a first manifold pressure (MAP) sensor positioned with respect to the first aftercooler device, a second MAP sensor positioned with respect to the engine intake manifold, a mass airflow (MAF) sensor positioned in the air intake manifold, a first manifold temperature (MAT) sensor positioned in the engine intake manifold, and a second MAT sensor positioned between the first aftercooler device and the throttle. The controller executes a method to calculate a cylinder air charge using an oxygen level of post-combustion gasses and the engine status signals, and controls an operation of the engine using the calculated air charge via engine control signals.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: November 1, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Hossein Javaherian, Shifang Li, Yiran Hu, Jun-Mo Kang, Chen-Fang Chang
  • Publication number: 20160290256
    Abstract: A system includes a turbocharged engine, sensors, and a controller. The engine includes an engine intake manifold, air intake manifold, a compressor, a first aftercooler device, a throttle that admits cooled compressed air to the engine intake manifold, and cylinders. The sensors determine engine status signals and include a first manifold pressure (MAP) sensor positioned with respect to the first aftercooler device, a second MAP sensor positioned with respect to the engine intake manifold, a mass airflow (MAF) sensor positioned in the air intake manifold, a first manifold temperature (MAT) sensor positioned in the engine intake manifold, and a second MAT sensor positioned between the first aftercooler device and the throttle. The controller executes a method to calculate a cylinder air charge using an oxygen level of post-combustion gasses and the engine status signals, and controls an operation of the engine using the calculated air charge via engine control signals.
    Type: Application
    Filed: March 30, 2015
    Publication date: October 6, 2016
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Hossein Javaherian, Shifang Li, Yiran Hu, Jun-Mo Kang, Chen-Fang Chang
  • Publication number: 20160237941
    Abstract: An engine assembly includes an intake manifold and a manifold absolute pressure sensor configured to generate a current measured manifold absolute pressure (MAPM) signal for the intake manifold. The assembly includes a throttle valve adjustable to control airflow to the intake manifold and a throttle position sensor configured to generate a current measured throttle position (TPM) signal. A controller is operatively connected to the throttle valve and the manifold absolute pressure sensor and has a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for determining a predicted manifold absolute pressure (MAPP). Execution of the instructions by the processor causes the controller to determine the predicted manifold absolute pressure (MAPP) based at least partially on a predicted throttle flow (TFP) and the current measured manifold absolute pressure (MAPM) signal.
    Type: Application
    Filed: February 17, 2015
    Publication date: August 18, 2016
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yiran Hu, Ibrahim Haskara, Shifang Li, Sai S.V. Rajagopalan, Steven E. Muldoon, Chen-Fang Chang
  • Publication number: 20160237940
    Abstract: An engine system includes a mass air flow sensor and a manifold absolute pressure sensor configured to provide a real-time MAP signal during an event. The mass air flow sensor is configured to generate a set of mass air flow readings based on an airflow through the mass air flow sensor during the event. The set of mass air flow readings have a maximum value and a minimum value. A controller is configured to execute a method for detecting reversion in the air flow. If the rate of change in the real-time MAP signal is less than the predetermined transient threshold value (T0), the method includes setting a delta factor (D) as the difference between the maximum value and the minimum value. Reversion is detected based at least partially on a magnitude of the delta factor (D).
    Type: Application
    Filed: February 17, 2015
    Publication date: August 18, 2016
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yiran Hu, Shifang Li, Chen-Fang Chang
  • Patent number: 9394838
    Abstract: An internal combustion engine is configured to operate in a homogeneous-charge compression-ignition combustion mode. A method for operating the internal combustion engine includes determining a desired effective charge dilution for a cylinder charge for a cylinder firing event. A desired air/fuel ratio, a desired intake air mass and a desired intake oxygen are determined to achieve the desired effective charge dilution for a combustion event. The desired air/fuel ratio is adjusted based upon a difference between the desired intake oxygen and the actual intake oxygen, and engine operation is controlled to achieve the adjusted desired air/fuel ratio.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: July 19, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Orgun A. Guralp, Jun-Mo Kang, Hanho Yun, Sai S. V. Rajagopalan, Yongjie Zhu, Chen-Fang Chang, Paul M. Najt
  • Publication number: 20160177852
    Abstract: An internal combustion engine includes an air charging system. A method to control the air charging system includes providing a desired operating target command for the air charging system, and monitoring operating parameters of the air charging system. An error between the desired operating target command for the air charging system and the corresponding one of said operating parameters of the air charging system is determined, and scheduled PID gains are determined based on the error utilizing a PID controller. An adaptive algorithm is applied to modify the scheduled PID gains, and a system control command for the air charging system is determined based upon the modified scheduled PID gains. The air charging system is controlled based upon the system control command for the air charging system.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 23, 2016
    Inventors: YUE-YUN WANG, IBRAHIM HASKARA, CHEN-FANG CHANG, STEVEN E. MULDOON
  • Patent number: 9284906
    Abstract: Controlling combustion in a spark-ignition direction-injection internal combustion engine includes providing an initial injected fuel mass timing and an initial spark ignition timing. A combustion phasing error is monitored and compared with each of the initial injected fuel mass timing and the initial spark ignition timing. An adjusted injected fuel mass timing and an adjusted desired spark ignition timing is determined based on the comparing for maintaining a desired combustion phasing.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: March 15, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Hanho Yun, Nicole Wermuth, Paul M. Najt, Jun-Mo Kang, Chen-Fang Chang
  • Patent number: 9267451
    Abstract: An internal combustion engine operates in a homogeneous-charge compression-ignition combustion mode. A method for controlling the internal combustion engine in response to a fast transient event from a low-load state to a high-load state includes operating the engine with a negative valve overlap between an intake valve and an exhaust valve, and determining a preferred combustion phasing responsive to the high-load state. A preferred EGR mass and a preferred intake valve timing corresponding to the preferred combustion phasing are determined. A first intake valve timing is determined in response to a difference between the preferred EGR mass and an actual EGR mass. The intake valve timing is controlled in response to a difference between the preferred intake valve timing and the first intake valve timing.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: February 23, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jun-Mo Kang, Chen-Fang Chang, Hanho Yun
  • Publication number: 20160017834
    Abstract: An internal combustion engine is configured to operate in a homogeneous-charge compression-ignition combustion mode. Operation of the engine includes determining a combustion pressure parameter for each cylinder. Fueling for each cylinder is controlled responsive to a target state for the combustion pressure parameter for the corresponding cylinder. An end-of-injection timing and a corresponding spark ignition timing for each cylinder are controlled responsive to a target mass-burn-fraction point for an engine operating point.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 21, 2016
    Inventors: HANHO YUN, JUN-MO KANG, ORGUN A. GURALP, CHEN-FANG CHANG, PAUL M. NAJT
  • Publication number: 20150345417
    Abstract: A method for estimating the volumetric efficiency in an internal combustion engine in real time includes the following steps: (a) monitoring an oxygen percentage of gases in the intake manifold using an oxygen sensor coupled to an intake manifold; and (b) determining, via a control module, a volumetric efficiency of the internal combustion engine in real time based, at least in part, on the oxygen percentage of the gases in the intake manifold.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 3, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yongjie Zhu, Jun-Mo Kang, Chen-Fang Chang
  • Publication number: 20150300279
    Abstract: The method can control a powertrain in order to maintain the charge temperature at a desired value regardless of exhaust manifold pressure or altitude. The method includes the following steps: (a) receiving a torque request; (b) determining a desired air charge based, a least in part, on the torque request; (c) determining an actual air charge based, at least in part, on input signals from a manifold absolute pressure (MAP) sensor and a mass airflow (MAF) sensor; (d) adjusting an intake valve timing of the intake valve such that the actual air charge is equal to a desired air charge, and (e) adjusting throttle position and actuator positions of boosting devices such that the actual intake manifold pressure is equal to the desired intake manifold pressure.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 22, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jun-Mo Kang, Orgun A. Guralp, Hanho Yun, Sai S.V. Rajagopalan, Chen-Fang Chang, Paul M. Najt