Patents by Inventor Chen Ling

Chen Ling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210132849
    Abstract: A data migration method and an apparatus are provided. The method is as follows: sending, by a first storage system, a location update request to a location server, where the location update request is used to indicate the location server to update location information of a first bucket from being located in a second storage system to being located in the first storage system (402); migrating data (405) in a first bucket from the second storage system; receiving a data access request, where the data access request is used to access the data (406) in the first bucket; and determining based on a type of the data access request and a migration status of the data, that the first storage system or the second storage system processes the data access request (407).
    Type: Application
    Filed: January 8, 2021
    Publication date: May 6, 2021
    Inventors: Feng XU, Yu ZHANG, Ling LIN, Chen LING, Lei HUANG
  • Publication number: 20210101230
    Abstract: A grain-oriented silicon steel with low iron loss, wherein the silicon steel is provided with a plurality of grooves on its surface, each of the grooves is 10-60 ?m in width and 5-40 ?m in depth, and the spacing between adjacent grooves is 1-10 mm. The manufacturing method therefor comprises: scoring the surface of the grain-oriented silicon steel with low iron loss by using a laser in order to form the grooves. The grain-oriented silicon steel with low iron loss can maintain the magnetic domain refining effect in a stress-relief annealing process, and avoid the introduction of more residual stress.
    Type: Application
    Filed: January 24, 2018
    Publication date: April 8, 2021
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Meihong WU, Zipeng ZHAO, Guobao LI, Kanyi SHEN, Zhuochao HU, Chen LING, Huande SUN, Huabing ZHANG
  • Publication number: 20210083318
    Abstract: Solid-state lithium ion electrolytes of lithium potassium tantalate based compounds are provided which contain an anionic framework capable of conducting lithium ions. An activation energy of the lithium metal silicate composites is from 0.12 to 0.45 eV and conductivities are from 10?3 to 40 mS/cm at 300K. Compounds of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium potassium tantalate based materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING
  • Publication number: 20210083319
    Abstract: Solid-state lithium ion electrolytes of lithium potassium element oxide based compounds are provided which contain an anionic framework capable of conducting lithium ions. The element atoms are Ir, Sb, I Nb and W. An activation energy of the lithium potassium element oxide compounds is from 0.15 to 0.50 eV and conductivities are from 10?3 to 22 mS/cm at 300K. Compounds of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium potassium element oxide based materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING
  • Patent number: 10934327
    Abstract: Disclosed are next-generation multi-mutated capsid protein-modified rAAV expression vectors, as well as infectious virions, compositions, and pharmaceutical formulations that include them. Also disclosed are methods of preparing and using these high transduction efficiency vector constructs in a variety of therapeutic applications including, inter alia, as delivery agents for the treatment or amelioration of one or more diseases or abnormal conditions in an affected mammal using in vivo and/or ex situ viral vector-based gene therapy protocols. Also disclosed are large-scale production methods for the multi-mutated, capsid-modified rAAV expression vectors, viral particles, and infectious virions, as well as use of the disclosed compositions in the manufacture of medicaments for use in a variety of in vitro and/or in vivo therapeutic methodologies.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: March 2, 2021
    Assignee: University of Florida Research Foundation, Incorporated
    Inventors: Arun Srivastava, Li Zhong, Sergei Zolotukhin, George Vladimirovich Aslanidi, Mavis Agbandje-McKenna, Kim M. Van Vliet, Chen Ling
  • Patent number: 10938063
    Abstract: Solid-state lithium ion electrolytes of lithium silicate based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium metal sulfide based materials and batteries with such electrodes are also provided.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: March 2, 2021
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Xingfeng He, Chen Ling
  • Patent number: 10927465
    Abstract: An oxygen evolution catalyst of the formula: Sr2MCoO5 where M=Al, Ga wherein M is bonded with four oxygen atoms to form a tetrahedron. The catalyst is operated at a potential of less than 1.58 volts vs. RHE at a current density of 50 ?A/cm2 for a pH of 7-13. The catalyst is operated at a potential of less than 1.55 volts vs. RHE at a current density of 50 ?A/cm2 and a pH of 13. The oxygen evolution catalyst of the formula: Sr2GaCoO5 wherein the catalyst is operated at a potential of less than 1.53 volts vs. RHE at a current density of 50 ?A/cm2 and a pH of 7. The oxygen evolution catalyst of formula: Sr2GaCoO5 wherein the catalyst maintains a current within 94% after 300 minutes at a potential of 1.645 volts vs. RHE wherein the current is greater than 1 milliamp and a pH of 7.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 23, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Li Qin Zhou, Krishna Reddy Gunugunuri, Chen Ling, Hongfei Jia
  • Patent number: 10923763
    Abstract: Solid-state lithium ion electrolytes of lithium metal sulfide based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium metal sulfide based materials and batteries with such electrodes are also provided.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: February 16, 2021
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Xingfeng He, Chen Ling
  • Publication number: 20210028487
    Abstract: Solid-state lithium ion electrolytes of lithium fluoride based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium fluoride based composites are also provided.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., University Of Maryland, College Park
    Inventors: Chen LING, Ying Zhang, Yifei Mo, Qiang Bai
  • Patent number: 10903487
    Abstract: An electrochemical cell includes a metal containing anode M? capturing and releasing cations, a metal containing cathode M? and an electrolyte including an anion X? and a cation M?+. During the charge process, the electrolyte allows reversible reactions wherein the anion dissociates from the electrolyte and reacts with the metal cathode forming M?Xy. At the same time, cations M?+ from the electrolyte deposit on the anode side. The reverse process happens during the discharge process.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: January 26, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Ruigang Zhang, Chen Ling, Fuminori Mizuno
  • Patent number: 10900053
    Abstract: Provided herein are recombinant adeno-associated virus (rAAV) nucleic acid vectors that comprise one or more modifications within at least one inverted terminal repeat (ITR) region. Exemplary modifications include ITR sequences comprising a glucocorticoid responsive element and/or a transcription factor binding site. Also provided are plasmids, libraries, rAAV particles, compositions, kits, and methods related to such vectors.
    Type: Grant
    Filed: November 21, 2015
    Date of Patent: January 26, 2021
    Assignee: University of Florida Research Foundation, Incorporated
    Inventors: Yuan Lu, Chen Ling, Arun Srivastava
  • Patent number: 10870083
    Abstract: A polyvinylidene fluoride (PVDF) casting membrane solution is shaped as a flat sheet membrane by thermally induced phase separation (TIPS), the PVDF membrane is defluorinated with an alkaline potassium permanganate solution, and then the carbon chain is extended with glycidyl methacrylate (GMA) as the graft monomer, and finally the nucleophilic substitution is carried out between melamine and GMA to produce a chelating microfiltration membrane for capturing and enriching heavy metals with high flux and high capacity.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: December 22, 2020
    Assignee: NANJING UNIVERSITY
    Inventors: Fuqiang Liu, Yanhong Zhang, Li Song, Wei Zhao, Changqing Zhu, Chen Ling, Aimin Li
  • Patent number: 10854916
    Abstract: Solid-state lithium ion electrolytes of lithium metal sulfide based composites are provided which contain an anionic framework capable of conducting lithium ions. An activation energy of the lithium metal sulfide composites is from 0.2 to 0.45 eV and conductivities are from 10?4 to 3.0 mS/cm at 300K. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium metal sulfide based composites and batteries with such electrodes are also provided.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: December 1, 2020
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Xingfeng He, Chen Ling, Ying Zhang
  • Patent number: 10854915
    Abstract: Solid-state lithium ion electrolytes of lithium fluoride based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium fluoride based composites are also provided.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: December 1, 2020
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Chen Ling, Ying Zhang, Yifei Mo, Qiang Bai
  • Patent number: 10818969
    Abstract: Solid-state lithium ion electrolytes of lithium borate based composites are provided which contain an anionic framework capable of conducting lithium ions. Materials of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium borate based materials and batteries containing the electrodes are also provided.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 27, 2020
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA INC.
    Inventors: Yifei Mo, Xingfeng He, Chen Ling, Ying Zhang
  • Patent number: 10773959
    Abstract: Methods for representing crystal structure of inorganic materials in matrix form, and for quantitative comparison of multiple inorganic materials, can be employed to identify candidate materials with high potential to possess a desired property. Such methods can include conversion of an atomic coordinate set to a coordinate set for an anion only lattice, anion substitution, and unit cell re-scaling. Such methods can further include simulation of x-ray diffraction data for modified anion-only lattices, and generation of n×2 matrices from the simulated diffraction data. Quantitative structural similarity values can be derived from the n×2 matrices. The quantitative structural similarity values can be useful for structural categorization, as well as prediction of functional properties.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: September 15, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Chen Ling, Ying Zhang, Zhiqian Chen, Debasish Banerjee
  • Publication number: 20200274187
    Abstract: 3-D magnesium voltaic cells have a magnesium anode coated on multiple opposing surfaces with a continuous protective/electrolyte layer that is ionically conductive and electronically insulating. The resulting protected 3-D magnesium anode is coated on multiple opposing surfaces with a continuous cathode layer that is electronically and ionically conductive, and includes a magnesium storage medium. Suitable magnesium anodes, in particular, magnesium foam anodes, can be made by pulsed galvanostatic deposition of magnesium on a copper substrate. The protective layer can be formed by electropolymerization of a suitable methylacrylate ester. The continuous cathode layer can be a slurry cathode having powders of an electronic conductor and a reversible magnesium storage component suspended in a magnesium electrolyte solution.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Fuminori Mizuno, Rana Mohtadi, Oscar Tutusaus, Nikhilendra Singh, Timothy S. Arthur, Ruidong Yang, Kensuke Takechi, Chen Ling, Ruigang Zhang
  • Publication number: 20200251771
    Abstract: Solid-state lithium ion electrolytes of lithium phosphate derivative compounds are provided which contain an anionic framework capable of conducting lithium ions. The activation energy of the lithium phosphate derivative compounds is from 0.2 to 0.45 eV and conductivities are from 0.01 to 10 mS/cm at 300K. Materials of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium phosphate derivative materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING
  • Publication number: 20200251770
    Abstract: Solid-state lithium ion electrolytes of lithium silicate based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium metal sulfide based materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang Bai, Xingfeng He, Chen Ling
  • Publication number: 20200251772
    Abstract: Solid-state lithium ion electrolytes of lithium metal sulfide based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium metal sulfide based materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING