Patents by Inventor Chen-Shih Wang

Chen-Shih Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957064
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a spacer adjacent to the MTJ, a liner adjacent to the spacer, and a first metal interconnection on the MTJ. Preferably, the first metal interconnection includes protrusions adjacent to two sides of the MTJ and a bottom surface of the protrusions contact the liner directly.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Publication number: 20240081157
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a first spacer on one side of the of the MTJ, a second spacer on another side of the MTJ, a first metal interconnection on the MTJ, and a liner adjacent to the first spacer, the second spacer, and the first metal interconnection. Preferably, each of a top surface of the MTJ and a bottom surface of the first metal interconnection includes a planar surface and two sidewalls of the first metal interconnection are aligned with two sidewalls of the MTJ.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Publication number: 20240074328
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a first spacer on one side of the of the MTJ, a second spacer on another side of the MTJ, a first metal interconnection on the MTJ, and a liner adjacent to the first spacer, the second spacer, and the first metal interconnection. Preferably, each of a top surface of the MTJ and a bottom surface of the first metal interconnection includes a planar surface and two sidewalls of the first metal interconnection are aligned with two sidewalls of the MTJ.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Publication number: 20190062956
    Abstract: In one embodiment, a fiber treatment system includes a rotatable nubbed roller including an axis of rotation, a surface, and a number of spaced apart nubs projecting away from the surface, the number of spaced apart nubs imparting a number of spaced apart openings in a fiber tow. In another embodiment, the fiber treatment system further includes an optionally rotatable spreader roller for flattening the fiber tow. In yet another embodiment, the loosened, but still continuous fiber tow is chopped by a downstream chopper to form short fibers with reduced tow sizes.
    Type: Application
    Filed: October 26, 2018
    Publication date: February 28, 2019
    Inventors: Chen-Shih WANG, Charles William KNAKAL, Jeffrey Scott DAHL, Bhavesh Suresh SHAH
  • Patent number: 10160172
    Abstract: A method of repairing a polymeric composite workpiece. The method comprises identifying a localized area of the polymeric composite workpiece having a defect. A plurality of three dimensional interface structures are aligned adjacent at least a portion of the localized area. The method includes applying a polymeric composite patch to the localized area such that the interface structures are disposed between the polymeric composite workpiece and the polymeric composite patch. An alternating electromagnetic field may be introduced to selectively induce localized heating of the interface structures. The localized heating softens regions of the polymeric composite workpiece and the polymeric composite patch adjacent the interface structures, causing the interface structures to penetrate a distance into the respective polymeric composite workpiece and the polymeric composite patch.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: December 25, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xiaosong Huang, Chen-Shih Wang
  • Patent number: 10138579
    Abstract: In one embodiment, a fiber treatment system includes a rotatable nubbed roller including an axis of rotation, a surface, and a number of spaced apart nubs projecting away from the surface, the number of spaced apart nubs imparting a number of spaced apart openings in a fiber tow. In another embodiment, the fiber treatment system further includes an optionally rotatable spreader roller for flattening the fiber tow. In yet another embodiment, the loosened, but still continuous fiber tow is chopped by a downstream chopper to form short fibers with reduced tow sizes.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: November 27, 2018
    Assignee: United States Council For Automotive Research, LLC
    Inventors: Chen-Shih Wang, Charles William Knakal, Jeffrey Scott Dahl, Bhavesh Suresh Shah
  • Patent number: 9827707
    Abstract: A process, for joining workpieces using hybrid mechanical connector-resistance welding. The process in some embodiments includes introducing a conductive fluid to an interface between the workpieces. The process also includes inserting at least one mechanical conductive connector into at least one of the workpieces so that the connector reaches the interface having the conductive fluid therein. The process in some embodiments includes further applying energy for welding to the at least one mechanical conductive connector so that the energy passes, through the connector, to the conductive fluid and heat is generated in the workpieces at the interface, thereby melting the workpieces and forming a weld joint connecting the workpieces.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: November 28, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Pei-Chung Wang, Chen-Shih Wang, Yongqiang Li, Saul Lee, Hamid Kia
  • Patent number: 9808856
    Abstract: The present disclosure relates a rivet body, including a rivet head and a rivet shank, composed of a different material than a mandrel used for insertion into a workpiece(s), the mandrel including a mandrel shaft and a mandrel cap. The rivet body receives the mandrel shaft, including the mandrel cap, through the rivet shank. The mandrel shaft is received by the installation tool, which rotates the rivet body, and the mandrel cap locally deforms workpieces(s) through friction riveting to install the rivet body. During the friction riveting, the fast-rotating rivet body is pushed into the workpiece(s) causing local deformation/melting where the mandrel cap contacts the workpiece(s). The mandrel cap creates a cavity which progresses through an upper surface and a lower surface of the workpiece(s).
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: November 7, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Pei-Chung Wang, Chen-Shih Wang, Ingrid A. Rousseau
  • Patent number: 9561621
    Abstract: A method and apparatus to mitigate the severity of the bond-line read-out defect, and more specifically microwave heating to locally cure adhesive bond-line in a single or two stage process comprising heating thermoset adhesive with microwave radiation until the adhesive is fully cured or partially cured. If the adhesive is partially cured, it can be fully cured by being subjected to an additional thermal cycle.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: February 7, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Sampath K. Vanimisetti, Chen-Shih Wang
  • Publication number: 20160177475
    Abstract: In one embodiment, a fiber treatment system includes a rotatable nubbed roller including an axis 5 of rotation, a surface, and a number of spaced apart nubs projecting away from the surface, the number of spaced apart nubs imparting a number of spaced apart openings in a fiber tow. In another embodiment, the fiber treatment system further includes an optionally 10 rotatable spreader roller for flattening the fiber tow. In yet another embodiment, the loosened, but still continuous fiber tow is chopped by a downstream chopper to form short fibers with reduced tow sizes.
    Type: Application
    Filed: February 19, 2015
    Publication date: June 23, 2016
    Inventors: Chen-Shih WANG, Charles William KNAKAL, Jeffrey Scott DAHL, Bhavesh Suresh SHAH
  • Publication number: 20160167353
    Abstract: The present technology discloses methods for joining a first workpiece and a second workpiece through an interlocking weld, and products formed thereby. The first workpiece has a first surface and a second surface opposite the first surface, and the second workpiece has a first surface, a groove formed in the first surface, and a second surface opposite the first surface. The system is formed by applying energy to the system, at least partially melting material of the first workpiece, and causing the material to flow into the groove, and allowing or causing the material to cool, forming an interlocked-weld joint connecting the workpieces.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 16, 2016
    Inventors: HUA-TZU FAN, CHEN-SHIH WANG, JORGE F. ARINEZ, SUSAN M. SMYTH
  • Patent number: 9328266
    Abstract: A thermosetting polymer composite composition (such as thermosetting SMC composition) or a thermosetting adhesive composition containing reduced-volume hollow shape-memory alloy particles in the thermosetting polymer composite composition or adhesive composition experiences little or no volume loss during a curing at a temperature above the transformation temperature for the particles.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: May 3, 2016
    Assignee: GM Global Technology Operations, LLC
    Inventors: Sampath K. Vanimisetti, Chen-Shih Wang, Vidyashankar R. Buravalla
  • Publication number: 20160091009
    Abstract: The present disclosure relates a rivet body, including a rivet head and a rivet shank, composed of a different material than a mandrel used for insertion into a workpiece(s), the mandrel including a mandrel shaft and a mandrel cap. The rivet body receives the mandrel shaft, including the mandrel cap, through the rivet shank. The mandrel shaft is received by the installation tool, which rotates the rivet body, and the mandrel cap locally deforms workpieces(s) through friction riveting to install the rivet body. During the friction riveting, the fast-rotating rivet body is pushed into the workpiece(s) causing local deformation/melting where the mandrel cap contacts the workpiece(s). The mandrel cap creates a cavity which progresses through an upper surface and a lower surface of the workpiece(s).
    Type: Application
    Filed: September 25, 2014
    Publication date: March 31, 2016
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: PEI-CHUNG WANG, CHEN-SHIH WANG, INGRID A. ROUSSEAU
  • Publication number: 20160039157
    Abstract: A method of repairing a polymeric composite workpiece. The method comprises identifying a localized area of the polymeric composite workpiece having a defect. A plurality of three dimensional interface structures are aligned adjacent at least a portion of the localized area. The method includes applying a polymeric composite patch to the localized area such that the interface structures are disposed between the polymeric composite workpiece and the polymeric composite patch. An alternating electromagnetic field may be introduced to selectively induce localized heating of the interface structures. The localized heating softens regions of the polymeric composite workpiece and the polymeric composite patch adjacent the interface structures, causing the interface structures to penetrate a distance into the respective polymeric composite workpiece and the polymeric composite patch.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 11, 2016
    Inventors: Xiaosong HUANG, Chen-Shih WANG
  • Patent number: 9222007
    Abstract: One embodiment of the invention includes a shape memory polymer which functions similar to a traditional mechanical clamp. A shape memory polymer may exhibit adhesive properties when heated above its glass transition temperature. The shape memory polymers may function as a reversible dry adhesive clamp.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: December 29, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Tao Xie, Chen-Shih Wang
  • Patent number: 9212437
    Abstract: A one-piece fiber reinforcement for a reinforced polymer is described. In an embodiment, a one-piece reinforcement is fabricated by first assembling an interior randomly oriented fiber layer between two exterior aligned fiber layers. With all layers in face to face contact, a preselected number of fibers from the aligned layer is conveyed out of its aligned layer and threaded into at least the random fiber layer so that the conveyed fibers engage and mechanically and frictionally interfere with the random fibers. The fibers may be conveyed from one aligned layer to the other for yet greater interference. The interfering fibers serve to secure and interlock the layers together, producing a one-piece reinforcement which, when impregnated with a polymer precursor, shaped and cured may be incorporated in a polymer reinforced composite article.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 15, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Elisabeth J. Berger, John N. Owens, Chen-Shih Wang, Hamid G. Kia
  • Publication number: 20150053328
    Abstract: A process, for joining workpieces using hybrid mechanical connector-resistance welding. The process in some embodiments includes introducing a conductive fluid to an interface between the workpieces. The process also includes inserting at least one mechanical conductive connector into at least one of the workpieces so that the connector reaches the interface having the conductive fluid therein. The process in some embodiments includes further applying energy for welding to the at least one mechanical conductive connector so that the energy passes, through the connector, to the conductive fluid and heat is generated in the workpieces at the interface, thereby melting the workpieces and forming a weld joint connecting the workpieces.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 26, 2015
    Inventors: PEI-CHUNG WANG, CHEN-SHIH WANG, YONGQIANG LI, SAUL LEE, HAMID KIA
  • Patent number: 8852733
    Abstract: The present disclosure relates to a fibrous veil and methods of making the same. The fibrous veil includes a base having a plurality of fibers, each of the plurality of fibers having an average diameter ranging from about 7,000 nm to about 9,000 nm. Graphite nano-platelets are attached to at least some of the plurality of fibers without a polymeric binder.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: October 7, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Choongyong Kwag, Chen-Shih Wang
  • Patent number: 8840827
    Abstract: One embodiment of the invention provides a method for compression molding cosmetic panels with visible carbon fiber weaves using clear or lightly filled resins. The method uses a modified, two-step compression molding process to reflow the surface of a partially cured preform of carbon fiber weave and epoxy resin.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: September 23, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Stanley A. Iobst, Chen-Shih Wang, Choongyong Kwag
  • Patent number: 8827352
    Abstract: A system for controlling displacement of a vulnerable component in connection with an impact event at the system. The system includes a frame structure, the vulnerable component, and a composite crush member (a) connected to the frame structure and the vulnerable component, forming a first close connection between the composite crush member and the vulnerable component and a second close connection between the composite crush member and the frame structure, (b) comprises primarily a polymer composite and is configured, and (c) is arranged in the system to fail in a predetermined manner in response to the impact event. The system also includes a retention feature configured and connected, directly or indirectly, to the vulnerable component and to the frame structure to, in operation of the system, maintain at least one of the first close connection and the second close connection during and following the composite crush member the impact event.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Chen-Shih Wang, Hamid G. Kia, John N. Owens, Elisabeth J. Berger, Venkat Aitharaju