Patents by Inventor Chen-Yi Weng

Chen-Yi Weng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957064
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a spacer adjacent to the MTJ, a liner adjacent to the spacer, and a first metal interconnection on the MTJ. Preferably, the first metal interconnection includes protrusions adjacent to two sides of the MTJ and a bottom surface of the protrusions contact the liner directly.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Patent number: 11956972
    Abstract: A semiconductor memory device includes a substrate having a memory area and a logic circuit area thereon, a first interlayer dielectric layer on the substrate, and a second interlayer dielectric layer on the substrate. An embedded memory cell structure is disposed within the memory area between the first interlayer dielectric layer and the second interlayer dielectric layer. The second interlayer dielectric layer includes a first portion covering the embedded memory cell structure within the memory area and a second portion covering the logic circuit area. A top surface of the first portion is coplanar with a top surface of the second portion.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Si-Han Tsai, Ching-Hua Hsu, Chen-Yi Weng, Po-Kai Hsu
  • Patent number: 11953740
    Abstract: A package structure including a photonic, an electronic die, an encapsulant and a waveguide is provided. The photonic die includes an optical coupler. The electronic die is electrically coupled to the photonic die. The encapsulant laterally encapsulates the photonic die and the electronic die. The waveguide is disposed over the encapsulant and includes an upper surface facing away from the encapsulant. The waveguide includes a first end portion and a second end portion, the first end portion is optically coupled to the optical coupler, and the second end portion has a groove on the upper surface.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11947173
    Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Publication number: 20240107890
    Abstract: A method for fabricating semiconductor device includes the steps of forming an inter-metal dielectric (IMD) layer on a substrate, forming a metal interconnection in the IMD layer, forming a magnetic tunneling junction (MTJ) on the metal interconnection, and performing a trimming process to shape the MTJ. Preferably, the MTJ includes a first slope and a second slope and the first slope is less than the second slope.
    Type: Application
    Filed: October 24, 2022
    Publication date: March 28, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Ching-Hua Hsu, Jing-Yin Jhang
  • Publication number: 20240099154
    Abstract: A magnetoresistive random access memory (MRAM) device includes a first array region and a second array region on a substrate, a first magnetic tunneling junction (MTJ) on the first array region, a first top electrode on the first MTJ, a second MTJ on the second array region, and a second top electrode on the second MTJ. Preferably, the first top electrode and the second top electrode include different nitrogen to titanium (N/Ti) ratios.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Applicant: UNITED MICROELECTRONICS CORP
    Inventors: Hui-Lin Wang, Si-Han Tsai, Dong-Ming Wu, Chen-Yi Weng, Ching-Hua Hsu, Ju-Chun Fan, Yi-Yu Lin, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang
  • Publication number: 20240081157
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a first spacer on one side of the of the MTJ, a second spacer on another side of the MTJ, a first metal interconnection on the MTJ, and a liner adjacent to the first spacer, the second spacer, and the first metal interconnection. Preferably, each of a top surface of the MTJ and a bottom surface of the first metal interconnection includes a planar surface and two sidewalls of the first metal interconnection are aligned with two sidewalls of the MTJ.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Publication number: 20240074328
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a first spacer on one side of the of the MTJ, a second spacer on another side of the MTJ, a first metal interconnection on the MTJ, and a liner adjacent to the first spacer, the second spacer, and the first metal interconnection. Preferably, each of a top surface of the MTJ and a bottom surface of the first metal interconnection includes a planar surface and two sidewalls of the first metal interconnection are aligned with two sidewalls of the MTJ.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Publication number: 20240069277
    Abstract: A semiconductor package includes a first die stack structure and a second die stack structure, an insulating encapsulation, a redistribution structure, at least one prism structure and at least one reflector. The first die stack structure and the second die stack structure are laterally spaced apart from each other along a first direction, and each of the first die stack structure and the second die stack structure comprises an electronic die; and a photonic die electronically communicating with the electronic die. The insulating encapsulation laterally encapsulates the first die stack structure and the second die stack structure. The redistribution structure is disposed on the first die stack structure, the second die stack structure and the insulating encapsulation, and electrically connected to the first die stack structure and the second die stack structure. The at least one prism structure is disposed within the redistribution structure and optically coupled to the photonic die.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Yi Kuo, Chen-Hua Yu, Cheng-Chieh Hsieh, Che-Hsiang Hsu, Chung-Ming Weng, Tsung-Yuan Yu
  • Patent number: 11916018
    Abstract: A connection structure of a semiconductor device is provided in the present invention. The connection structure includes an interlayer dielectric, a top metal structure, and a passivation layer. The interlayer dielectric is disposed on a substrate. The top metal structure is disposed on the interlayer dielectric. The top metal structure includes a bottom portion and a top portion disposed on the bottom portion. The bottom portion includes a first sidewall, and the top portion includes a second sidewall. A slope of the first sidewall is larger than a slope of the second sidewall. The passivation layer is conformally disposed on the second sidewall, the first sidewall, and a top surface of the interlayer dielectric.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: February 27, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chen-Yi Weng, Shih-Che Huang, Ching-Li Yang, Chih-Sheng Chang
  • Patent number: 11917923
    Abstract: A magnetoresistive random access memory (MRAM) structure, including a substrate and multiple MRAM cells on the substrate, wherein the MRAM cells are arranged in a memory region adjacent to a logic region. An ultra low-k (ULK) layer covers the MRAM cells, wherein the surface portion of ultra low-k layer is doped with fluorine, and dents are formed on the surface of ultra low-k layer at the boundaries between the memory region and the logic region.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: February 27, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Ching-Hua Hsu, Si-Han Tsai, Shun-Yu Huang, Chen-Yi Weng, Ju-Chun Fan, Che-Wei Chang, Yi-Yu Lin, Po-Kai Hsu, Jing-Yin Jhang, Ya-Jyuan Hung
  • Publication number: 20240065108
    Abstract: The high-density MRAM device of the present invention has a second interlayer dielectric (ILD) layer covering the capping layer in the MRAM cell array area and the logic area. The thickness of the second ILD layer in the MRAM cell array area is greater than that in the logic area. The composition of the second ILD layer in the logic area is different from the composition of the second ILD layer in the MRAM cell array area.
    Type: Application
    Filed: September 14, 2022
    Publication date: February 22, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Ching-Hua Hsu, Chen-Yi Weng, Jing-Yin Jhang, Po-Kai Hsu
  • Publication number: 20240027550
    Abstract: A method for fabricating semiconductor device includes the steps of first forming a magnetic tunneling junction (MTJ) stack on a substrate, in which the MTJ stack includes a pinned layer on the substrate, a barrier layer on the pinned layer, and a free layer on the barrier layer. Next, a top electrode is formed on the MTJ stack, the top electrode, the free layer, and the barrier layer are removed, a first cap layer is formed on the top electrode, the free layer, and the barrier layer, and the first cap layer and the pinned layer are removed to form a MTJ and a spacer adjacent to the MTJ.
    Type: Application
    Filed: October 5, 2023
    Publication date: January 25, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Che-Wei Chang, Si-Han Tsai, Ching-Hua Hsu, Jing-Yin Jhang, Yu-Ping Wang
  • Publication number: 20240032440
    Abstract: A semiconductor device includes a substrate comprising a MTJ region and a logic region, a magnetic tunneling junction (MTJ) on the MTJ region, and a contact plug on the logic region. Preferably, the MTJ includes a bottom electrode layer having a gradient concentration, a free layer on the bottom electrode layer, and a top electrode layer on the free layer.
    Type: Application
    Filed: October 3, 2023
    Publication date: January 25, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chia-Chang Hsu, Chen-Yi Weng, Chin-Yang Hsieh, Jing-Yin Jhang
  • Publication number: 20240032439
    Abstract: A method of fabricating magnetoresistive random access memory, including providing a substrate, forming a bottom electrode layer, a magnetic tunnel junction stack, a top electrode layer and a hard mask layer sequentially on the substrate, wherein a material of the top electrode layer is titanium nitride, a material of the hard mask layer is tantalum or tantalum nitride, and a percentage of nitrogen in the titanium nitride gradually decreases from a top surface of top electrode layer to a bottom surface of top electrode layer, and patterning the bottom electrode layer, the magnetic tunnel junction stack, the top electrode layer and the hard mask layer into multiple magnetoresistive random access memory cells.
    Type: Application
    Filed: September 27, 2023
    Publication date: January 25, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Chin-Yang Hsieh, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, Jing-Yin Jhang, I-Ming Tseng, Yu-Ping Wang, Chien-Ting Lin, Kun-Chen Ho, Yi-Syun Chou, Chang-Min Li, Yi-Wei Tseng, Yu-Tsung Lai, JUN XIE
  • Publication number: 20240027549
    Abstract: A method for fabricating semiconductor device includes the steps of first forming a magnetic tunneling junction (MTJ) stack on a substrate, in which the MTJ stack includes a pinned layer on the substrate, a barrier layer on the pinned layer, and a free layer on the barrier layer. Next, a top electrode is formed on the MTJ stack, the top electrode, the free layer, and the barrier layer are removed, a first cap layer is formed on the top electrode, the free layer, and the barrier layer, and the first cap layer and the pinned layer are removed to form a MTJ and a spacer adjacent to the MTJ.
    Type: Application
    Filed: October 4, 2023
    Publication date: January 25, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Che-Wei Chang, Si-Han Tsai, Ching-Hua Hsu, Jing-Yin Jhang, Yu-Ping Wang
  • Patent number: 11864468
    Abstract: A magnetoresistive random access memory (MRAM) device includes a first array region and a second array region on a substrate, a first magnetic tunneling junction (MTJ) on the first array region, a first top electrode on the first MTJ, a second MTJ on the second array region, and a second top electrode on the second MTJ. Preferably, the first top electrode and the second top electrode include different nitrogen to titanium (N/Ti) ratios.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: January 2, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Si-Han Tsai, Dong-Ming Wu, Chen-Yi Weng, Ching-Hua Hsu, Ju-Chun Fan, Yi-Yu Lin, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang
  • Patent number: 11849648
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a first spacer on one side of the of the MTJ, a second spacer on another side of the MTJ, a first metal interconnection on the MTJ, and a liner adjacent to the first spacer, the second spacer, and the first metal interconnection. Preferably, each of a top surface of the MTJ and a bottom surface of the first metal interconnection includes a planar surface and two sidewalls of the first metal interconnection are aligned with two sidewalls of the MTJ.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: December 19, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Publication number: 20230403946
    Abstract: A method for fabricating semiconductor device includes first forming a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, performing an atomic layer deposition (ALD) process or a high-density plasma (HDP) process to form a passivation layer on the first MTJ and the second MTJ, performing an etching process to remove the passivation layer adjacent to the first MTJ and the second MTJ, and then forming an ultra low-k (ULK) dielectric layer on the passivation layer.
    Type: Application
    Filed: August 28, 2023
    Publication date: December 14, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Laio, Yu-Tsung Lai, Wei-Hao Huang
  • Patent number: 11821964
    Abstract: A method for fabricating semiconductor device includes the steps of first forming a magnetic tunneling junction (MTJ) stack on a substrate, in which the MTJ stack includes a pinned layer on the substrate, a barrier layer on the pinned layer, and a free layer on the barrier layer. Next, a top electrode is formed on the MTJ stack, the top electrode, the free layer, and the barrier layer are removed, a first cap layer is formed on the top electrode, the free layer, and the barrier layer, and the first cap layer and the pinned layer are removed to form a MTJ and a spacer adjacent to the MTJ.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: November 21, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Che-Wei Chang, Si-Han Tsai, Ching-Hua Hsu, Jing-Yin Jhang, Yu-Ping Wang