Patents by Inventor Cheng-An Chiang

Cheng-An Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11996400
    Abstract: A manufacturing method of a package-on-package structure includes at least the following steps. Top packages are mounted on a top side of a reconstructed wafer over a flexible tape, where conductive bumps at a bottom side of the reconstructed wafer is attached to the flexible tape, and during the mounting, a shape geometry of the respective conductive bump changes and at least a lower portion of the respective conductive bump is embraced by the flexible tape. The flexible tape is released from the conductive bumps after the mounting.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: May 28, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsuan-Ting Kuo, Ching-Hua Hsieh, Cheng-Ting Chen, Hsiu-Jen Lin, Hao-Jan Pei, Yu-Peng Tsai, Chia-Lun Chang, Chih-Chiang Tsao, Philip Yu-Shuan Chung
  • Patent number: 11996334
    Abstract: A method includes providing a first channel layer and a second channel layer over a substrate; forming a first patterned hard mask covering the first channel layer and exposing the second channel layer; selectively depositing a cladding layer on the second channel layer and not on the first patterned hard mask; performing a first thermal drive-in process; removing the first patterned hard mask; after removing the first patterned hard mask, forming an interfacial dielectric layer on the cladding layer and the first channel layer; and forming a high-k dielectric layer on the interfacial dielectric layer.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Mao-Lin Huang, Lung-Kun Chu, Jia-Ni Yu, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11996332
    Abstract: A semiconductor device includes a semiconductor substrate, a first semiconductor stack, a second semiconductor stack, a first gate structure, and a second gate structure. The semiconductor substrate comprising a first device region and a second device region. The first semiconductor stack is located on the semiconductor substrate over the first device region, and has first channels. The second semiconductor stack is located on the semiconductor substrate over the second device region, and has second channels. A total number of the first channels is greater than a total number of the second channels. The first gate structure encloses the first semiconductor stack. The second gate structure encloses the second semiconductor stack.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: May 28, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Ting Pan, Chih-Hao Wang, Kuo-Cheng Chiang, Yi-Bo Liao, Yi-Ruei Jhan
  • Patent number: 11996481
    Abstract: A semiconductor device includes a semiconductor layer. A gate structure is disposed over the semiconductor layer. A spacer is disposed on a sidewall of the gate structure. A height of the spacer is greater than a height of the gate structure. A liner is disposed on the gate structure and on the spacer. The spacer and the liner have different material compositions.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Huan-Chieh Su, Chih-Hao Wang, Kuo-Cheng Chiang, Wei-Hao Wu, Zhi-Chang Lin, Jia-Ni Yu, Yu-Ming Lin, Chung-Wei Hsu
  • Patent number: 11996298
    Abstract: A method for processing an integrated circuit includes forming a plurality of transistors. The method utilizes a reversed tone patterning process to selectively drive dipoles into the gate dielectric layers of some of the transistors while preventing dipoles from entering the gate dielectric layers of other transistors. This process can be repeated to produce a plurality of transistors each having different threshold voltages.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: May 28, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Lung-Kun Chu, Jia-Ni Yu, Chun-Fu Lu, Kuo-Cheng Chiang, Chih-Hao Wang
  • Publication number: 20240170343
    Abstract: A semiconductor device includes a first set of nanostructures stacked over a substrate in a vertical direction, and each of the first set of nanostructures includes a first end portion and a second end portion, and a first middle portion laterally between the first end portion and the second end portion. The first end portion and the second end portion are thicker than the first middle portion. The semiconductor device also includes a first plurality of semiconductor capping layers around the first middle portions of the first set of nanostructures, and a gate structure around the first plurality of semiconductor capping layers.
    Type: Application
    Filed: January 24, 2024
    Publication date: May 23, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sai-Hooi YEONG, Bo-Feng YOUNG, Chi-On CHUI, Chih-Chieh YEH, Cheng-Hsien WU, Chih-Sheng CHANG, Tzu-Chiang CHEN, I-Sheng CHEN
  • Publication number: 20240170556
    Abstract: A method for forming a semiconductor structure is provided. The method includes forming a spacer layer along a first fin structure and a second fin structure, etching a first portion of the spacer layer and the first fin structure to form first fin spacers and a first recess between the first fin spacers, etching a second portion of the spacer layer and the second fin structure to form second fin spacers and a second recess between the second fin spacers, and forming a first source/drain feature in the first recess and a second source/drain feature in the second recess. The second fin structure is wider than the first fin structure. The first fin spacers have a first height, and the second fin spacers have a second height that is greater than the first height.
    Type: Application
    Filed: February 20, 2023
    Publication date: May 23, 2024
    Inventors: Shih-Cheng CHEN, Zhi-Chang LIN, Jung-Hung CHANG, Chien-Ning YAO, Tsung-Han CHUANG, Kuo-Cheng CHIANG
  • Publication number: 20240170337
    Abstract: The present disclosure describes a semiconductor structure with a dielectric liner. The semiconductor structure includes a substrate and a fin structure on the substrate. The fin structure includes a stacked fin structure, a fin bottom portion below the stacked fin structure, and an isolation layer between the stacked fin structure and the bottom fin portion. The semiconductor structure further includes a dielectric liner in contact with an end of the stacked fin structure and a spacer structure in contact with the dielectric liner.
    Type: Application
    Filed: January 30, 2024
    Publication date: May 23, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Zhi-Chang LIN, Shih-Cheng CHEN, Kuo-Cheng CHIANG, Kuan-Ting PAN, Jung-Hung CHANG, Lo-Heng CHANG, Chien Ning YAO
  • Publication number: 20240168084
    Abstract: A semiconductor structure is provided. The semiconductor structure includes at least one metal gate structure and a device to be tested. The metal gate structure is disposed on a substrate. The device to be tested is disposed on the metal gate structure and electrically separated from the metal gate structure. The device to be tested is heated by a heat generated when the metal gate structure is applied with a voltage.
    Type: Application
    Filed: December 20, 2022
    Publication date: May 23, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Jih-Shun Chiang, Wen-Chun Chang, Wen-Hsiung Ko, Sung-Nien Kuo, Kuan-Cheng Su
  • Patent number: 11990471
    Abstract: Gate cutting techniques disclosed herein form gate isolation fins to isolate metal gates of multigate devices from one another before forming the multigate devices, and in particular, before forming the metal gates of the multigate devices. An exemplary device includes a first multigate device having first source/drain features and a first metal gate that surrounds a first channel layer and a second multigate device having second source/drain features and a second metal gate that surrounds a second channel layer. A gate isolation fin, which separates the first metal gate and the second metal gate, includes a first dielectric layer having a first dielectric constant and a second dielectric layer having a second dielectric constant disposed over the first dielectric layer. The second dielectric constant is less than the first dielectric constant. A gate isolation end cap may be disposed on the gate isolation fin to provide additional isolation.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: May 21, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Chiang, Shi Ning Ju, Guan-Lin Chen, Kuan-Ting Pan, Chih-Hao Wang
  • Patent number: 11990374
    Abstract: Embodiments of the present disclosure provide a method of forming sidewall spacers by filling a trench between a hybrid fin and a semiconductor fin structure. The sidewall spacer includes two fin sidewall spacer portions connected by a gate sidewall spacer portion. The fin sidewall spacer portion has a substantially uniform profile to provide uniform protection for vertically stacked channel layers and eliminate any gaps and leaks between inner spacers and sidewall spacers.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: May 21, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuan-Ting Pan, Kuo-Cheng Chiang, Shi Ning Ju, Yi-Ruei Jhan, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240162227
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The method includes forming a first dielectric feature between first and the second fin structures, wherein each first and second fin structure includes first semiconductor layers and second semiconductor layers alternatingly stacked and in contact with the first dielectric layer. The method also includes removing the second semiconductor layers so that the first semiconductor layers of the first and second fin structures extend laterally from a first side and a second side of the first dielectric feature, respectively, trimming the first dielectric feature so that the first dielectric feature has a reduced thickness on both first and the second sides, and forming a gate electrode layer to surround each of the first semiconductor layers of the first and second fin structures.
    Type: Application
    Filed: November 19, 2023
    Publication date: May 16, 2024
    Inventors: Guan-Lin CHEN, Kuo-Cheng CHIANG, Shi Ning JU, Jung-Chien CHENG, Chih-Hao WANG, Kuan-Lun CHENG
  • Patent number: 11984465
    Abstract: The present disclosure relates to a CMOS image sensor having a multiple deep trench isolation (MDTI) structure, and an associated method of formation. In some embodiments, the image sensor comprises a boundary deep trench isolation (BDTI) structure disposed at boundary regions of a pixel region surrounding a photodiode. The BDTI structure has a ring shape from a top view and two columns surrounding the photodiode with the first depth from a cross-sectional view. A multiple deep trench isolation (MDTI) structure is disposed at inner regions of the pixel region overlying the photodiode, the MDTI structure extending from the back-side of the substrate to a second depth within the substrate smaller than the first depth. The MDTI structure has three columns with the second depth between the two columns of the BDTI structure from the cross-sectional view. The MDTI structure is a continuous integral unit having a ring shape.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: May 14, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Chuang Wu, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Yen-Ting Chiang, Chun-Yuan Chen, Shen-Hui Hong
  • Patent number: 11984488
    Abstract: Methods and devices that include a multigate device having a channel layer disposed between a source feature and a drain feature, a metal gate that surrounds the channel layer, and a first air gap spacer interposing the metal gate and the source feature and a second air gap spacer interposing the metal gate and the drain feature. A backside contact extends to the source feature. A power line metallization layer is connected to the backside contact.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Guan-Lin Chen, Kuo-Cheng Chiang, Shi Ning Ju, Chih-Hao Wang, Kuan-Lun Cheng
  • Patent number: 11984361
    Abstract: A semiconductor device includes a substrate, a plurality of nanosheets, a plurality of source/drain (S/D) features, and a gate stack. The substrate includes a first fin and a second fin. The first fin has a first width less than a second width of the second fin. The plurality of nanosheets is disposed on the first fin and the second fin. The plurality of source/drain (S/D) features are located on the first fin and the second fin and abutting the plurality of nanosheets. A bottom surface of the plurality of source/drain (S/D) features on the first fin is equal to or lower than a bottom surface of the plurality of source/drain (S/D) features on the second fin. The gate stack wraps each of the plurality of nanosheets.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: May 14, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lo-Heng Chang, Chih-Hao Wang, Kuo-Cheng Chiang, Jung-Hung Chang, Pei-Hsun Wang
  • Publication number: 20240154014
    Abstract: The present disclosure provides a forksheet structure in a semiconductor device and methods of manufacturing thereof. The forksheet structure according to the present disclosure includes a dielectric wall disposed between two channel regions inside a gate structure and without extending through the sidewall spacers to the source/drain regions. In some embodiments, a cut metal gate (CMG) dielectric structure is formed in the gate structure along with the dielectric walls. A gate dielectric layer is in contact with the dielectric wall. In some embodiments, the dielectric layer surrounds semiconductor channels in the channel region. In other embodiments, the gate dielectric layer surrounds a portion of the semiconductor channels in the channel region, for example forming a ?-shape cross sectional profile around the semiconductor channel.
    Type: Application
    Filed: February 7, 2023
    Publication date: May 9, 2024
    Inventors: Kuan-Ting PAN, Kuo-Cheng CHIANG, Shi Ning JU, Chia-Hao CHANG, Chih-Hao WANG
  • Publication number: 20240152273
    Abstract: A memory management method for continuously recording digital content and a circuit system operating the method are provided. The circuit system includes a control circuit, a memory, and a storage device. The memory has a buffer that is defined as a pre-buffer or a main buffer based on a current recording mode. In the method, the circuit system loads continuously-received data and sequentially saves the data in the buffer that is defined as the pre-buffer in a first-in-first-out manner before a start-record instruction is received. After the start-record instruction is received, the data buffered in the pre-buffer is combined with the data that is continuously recorded to the main buffer. This file is then written to the storage device until a stop-record instruction is received.
    Type: Application
    Filed: October 11, 2023
    Publication date: May 9, 2024
    Inventors: Yu-Cheng Lee, Hsien-Yang Chiang
  • Publication number: 20240153958
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a plurality of semiconductor layers having a first group of semiconductor layers, a second group of semiconductor layers disposed over and aligned with the first group of semiconductor layers, and a third group of semiconductor layers disposed over and aligned with the second group of semiconductor layers. The structure further includes a first source/drain epitaxial feature in contact with a first number of semiconductor layers of the first group of semiconductor layers and a second source/drain epitaxial feature in contact with a second number of semiconductor layers of the third group of semiconductor layers. The first number of semiconductor layers of the first group of semiconductor layers is different from the second number of semiconductor layers of the third group of semiconductor layers.
    Type: Application
    Filed: January 7, 2024
    Publication date: May 9, 2024
    Inventors: Jung-Hung CHANG, Zhi-Chang LIN, Shih-Cheng CHEN, Chien Ning YAO, Kuo-Cheng CHIANG, Chih-Hao WANG
  • Patent number: D1026816
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: May 14, 2024
    Assignee: VOLTRONIC POWER TECHNOLOGY CORP.
    Inventors: You-Sheng Chiang, Yu-Cheng Lu, Juor-Ming Hsieh
  • Patent number: D1026817
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: May 14, 2024
    Assignee: VOLTRONIC POWER TECHNOLOGY CORP.
    Inventors: You-Sheng Chiang, Yu-Cheng Lu, Juor-Ming Hsieh