Patents by Inventor Cheng-Chieh Chang

Cheng-Chieh Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145398
    Abstract: A carrier structure is provided, in which at least one positioning area is defined on a chip-placement area of a package substrate, and at least one alignment portion is disposed on the positioning area. Therefore, the precision of manufacturing the alignment portion is improved by disposing the positioning area on the chip-placement area, such that the carrier structure can provide a better alignment mechanism for the chip placement operation.
    Type: Application
    Filed: December 8, 2022
    Publication date: May 2, 2024
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Cheng-Liang HSU, Wan-Rou CHEN, Hsin-Yin CHANG, Tsung-Li LIN, Hsiu-Jung LI, Chiu-Lien LI, Fu-Quan XU, Yi-Wen LIU, Chih-Chieh SUN
  • Patent number: 11973127
    Abstract: Semiconductor structures and method for forming the same are provide. The semiconductor structure includes a fin structure protruding from a substrate and a gate structure formed across the fin structure. The semiconductor structure further includes an Arsenic-doped region formed in the fin structure and a source/drain structure formed over the Arsenic-doped region. In addition, a bottommost portion of the Arsenic-doped region is lower than a bottommost portion of the source/drain structure.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: April 30, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee, Huai-Tei Yang
  • Patent number: 11955515
    Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a superlattice structure on the fin structure, forming first and second S/D regions within the superlattice structure, forming a gate structure between the first and second S/D regions, forming first and second contact structures on first surfaces of the first and second S/D regions, and forming a third contact structure, on a second surface of the first S/D region, with a work function metal (WFM) silicide layer and a dual metal liner. The second surface is opposite to the first surface of the first S/D region and the WFM silicide layer has a work function value closer to a conduction band energy than a valence band energy of a material of the first S/D region.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Chuan Chiu, Chia-Hao Chang, Cheng-Chi Chuang, Chih-Hao Wang, Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Yu-Ming Lin
  • Patent number: 11956887
    Abstract: A board, including a first pad area, a second pad area, a first micro heater, a second micro heater, a first heater terminal pad, a second heater terminal pad, and a third heater terminal pad, is provided. The first pad area and the second pad area respectively include at least one pad. The first micro heater and the second micro heater are respectively disposed corresponding to the first pad area and the second pad area. The first heater terminal pad and the second heater terminal pad form a loop with the first micro heater by being electrically connected to an outside, so that the first micro heater generates heat. The second heater terminal pad and the third heater terminal pad form another loop with the second micro heater by being electrically connected to the outside, so that the second micro heater generates heat. A circuit board and a fixture are also provided.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Skiileux Electricity Inc.
    Inventors: Shang-Wei Tsai, Cheng Chieh Chang, Te Fu Chang
  • Publication number: 20240113143
    Abstract: Various embodiments of the present disclosure are directed towards an imaging device including a first image sensor element and a second image sensor element respectively comprising a pixel unit disposed within a semiconductor substrate. The first image sensor element is adjacent to the second image sensor element. A first micro-lens overlies the first image sensor element and is laterally shifted from a center of the pixel unit of the first image sensor element by a first lens shift amount. A second micro-lens overlies the second image sensor element and is laterally shifted from a center of the pixel unit of the second image sensor element by a second lens shift amount different from the first lens shift amount.
    Type: Application
    Filed: January 6, 2023
    Publication date: April 4, 2024
    Inventors: Cheng Yu Huang, Wen-Hau Wu, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Chih-Kung Chang
  • Publication number: 20240113071
    Abstract: An integrated circuit package including electrically floating metal lines and a method of forming are provided. The integrated circuit package may include integrated circuit dies, an encapsulant around the integrated circuit dies, a redistribution structure on the encapsulant, a first electrically floating metal line disposed on the redistribution structure, a first electrical component connected to the redistribution structure, and an underfill between the first electrical component and the redistribution structure. A first opening in the underfill may expose a top surface of the first electrically floating metal line.
    Type: Application
    Filed: January 5, 2023
    Publication date: April 4, 2024
    Inventors: Chung-Shi Liu, Mao-Yen Chang, Yu-Chia Lai, Kuo-Lung Pan, Hao-Yi Tsai, Ching-Hua Hsieh, Hsiu-Jen Lin, Po-Yuan Teng, Cheng-Chieh Wu, Jen-Chun Liao
  • Publication number: 20240096996
    Abstract: A semiconductor device includes a first dielectric layer, a stack of semiconductor layers disposed over the first dielectric layer, a gate structure wrapping around each of the semiconductor layers and extending lengthwise along a direction, and a dielectric fin structure and an isolation structure disposed on opposite sides of the stack of semiconductor layers and embedded in the gate structure. The dielectric fin structure has a first width along the direction smaller than a second width of the isolation structure along the direction. The isolation structure includes a second dielectric layer extending through the gate structure and the first dielectric layer, and a third dielectric layer extending through the first dielectric layer and disposed on a bottom surface of the gate structure and a sidewall of the first dielectric layer.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Lo-Heng Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240088267
    Abstract: A semiconductor device comprises a fin structure disposed over a substrate; a gate structure disposed over part of the fin structure; a source/drain structure, which includes part of the fin structure not covered by the gate structure; an interlayer dielectric layer formed over the fin structure, the gate structure, and the source/drain structure; a contact hole formed in the interlayer dielectric layer; and a contact material disposed in the contact hole. The fin structure extends in a first direction and includes an upper layer, wherein a part of the upper layer is exposed from an isolation insulating layer. The gate structure extends in a second direction perpendicular to the first direction. The contact material includes a silicon phosphide layer and a metal layer.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yi PENG, Chih Chieh YEH, Chih-Sheng CHANG, Hung-Li CHIANG, Hung-Ming CHEN, Yee-Chia YEO
  • Publication number: 20240088182
    Abstract: In some embodiments, an image sensor is provided. The image sensor includes a photodetector disposed in a semiconductor substrate. A wave guide filter having a substantially planar upper surface is disposed over the photodetector. The wave guide filter includes a light filter disposed in a light filter grid structure. The light filter includes a first material that is translucent and has a first refractive index. The light filter grid structure includes a second material that is translucent and has a second refractive index less than the first refractive index.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Chien Yu, Ting-Cheng Chang, Wen-Hau Wu, Chih-Kung Chang
  • Patent number: 11923386
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a first photodetector disposed in a first pixel region of a semiconductor substrate and a second photodetector disposed in a second pixel region of the semiconductor substrate. The second photodetector is laterally separated from the first photodetector. A first diffuser is disposed along a back-side of the semiconductor substrate and over the first photodetector. A second diffuser is disposed along the back-side of the semiconductor substrate and over the second photodetector. A first midline of the first pixel region and a second midline of the second pixel region are both disposed laterally between the first diffuser and the second diffuser.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang
  • Patent number: 11923252
    Abstract: A semiconductor device includes a first set of nanostructures stacked over a substrate in a vertical direction, and each of the first set of nanostructures includes a first end portion and a second end portion, and a first middle portion laterally between the first end portion and the second end portion. The first end portion and the second end portion are thicker than the first middle portion. The semiconductor device also includes a first plurality of semiconductor capping layers around the first middle portions of the first set of nanostructures, and a gate structure around the first plurality of semiconductor capping layers.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sai-Hooi Yeong, Bo-Feng Young, Chi-On Chui, Chih-Chieh Yeh, Cheng-Hsien Wu, Chih-Sheng Chang, Tzu-Chiang Chen, I-Sheng Chen
  • Publication number: 20240006575
    Abstract: A light emitting device including a substrate, a first pad, a second pad, a light emitting diode, a first connection structure, a second connection structure, and a patterned adhesive layer and a method for manufacturing the same are provided. The first pad and the second pad are located on the substrate. The light emitting diode includes a first semiconductor layer, a second semiconductor layer overlapping the first semiconductor layer, a first electrode and a second electrode. The first electrode and the second electrode are respectively connected to the first semiconductor layer and the second semiconductor layer. The first connection structure electrically connects the first electrode to the first pad. The second connection structure electrically connects the second electrode to the second pad. The patterned adhesive layer is located between the substrate and the light emitting diode and does not contact the first connection structure and the second connection structure.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 4, 2024
    Applicant: AUO Corporation
    Inventors: Fang-Cheng Yu, Cheng-Chieh Chang, Cheng-Yeh Tsai
  • Patent number: 11804583
    Abstract: A light emitting device including a substrate, a first pad, a second pad, a light emitting diode, a first connection structure, a second connection structure, and a patterned adhesive layer and a method for manufacturing the same are provided. The first pad and the second pad are located on the substrate. The light emitting diode includes a first semiconductor layer, a second semiconductor layer overlapping the first semiconductor layer, a first electrode and a second electrode. The first electrode and the second electrode are respectively connected to the first semiconductor layer and the second semiconductor layer. The first connection structure electrically connects the first electrode to the first pad. The second connection structure electrically connects the second electrode to the second pad. The patterned adhesive layer is located between the substrate and the light emitting diode and does not contact the first connection structure and the second connection structure.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: October 31, 2023
    Assignee: Au Optronics Corporation
    Inventors: Fang-Cheng Yu, Cheng-Chieh Chang, Cheng-Yeh Tsai
  • Patent number: 11742456
    Abstract: A chip-detecting method, a chip-detecting structure and a chip-carrying structure are provided. The chip-detecting method includes providing a chip-detecting structure including a plurality of micro heater groups, a chip-carrying structure for carrying a plurality of chips, and a plurality of soldering material groups disposed between the chip-carrying structure and the chip-detecting structure; placing the chip-carrying structure and the chip-detecting structure adjacent to each other, so that each of the soldering material groups simultaneously contact the chip-carrying structure and the chip-detecting structure; respectively curing the low-temperature soldering material groups by heating of the micro heater groups, so that the chips are electrically connected to the chip-detecting structure respectively through the low-temperature soldering material groups that have been cured; and then detecting the chips so as to divide the chips into a plurality of good chips and a plurality of bad chips.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: August 29, 2023
    Assignee: ASTI GLOBAL INC., TAIWAN
    Inventors: Chien-Shou Liao, Cheng-Chieh Chang
  • Publication number: 20230068211
    Abstract: A device for transferring electronic component, comprising: an energy source used to project an energy beam; a first frame used to carry a carrier loaded with electronic component; a second frame used to carry a substrate for receiving the aforesaid electronic component; a beam splitting element arranged between the first frame and the energy source; and a focusing device arranged between the first frame and the beam splitting element. The present invention also relates to a method of transferring electronic component. The device for transferring electronic component and the method for transferring electronic component of the present invention can be applied in the manufacturing process of display.
    Type: Application
    Filed: June 2, 2022
    Publication date: March 2, 2023
    Inventors: SHENG-HSIANG YU, SHANG-WEI TSAI, TE-FU CHANG, CHENG-CHIEH CHANG
  • Patent number: 11545472
    Abstract: A bi-directional optical module includes a substrate, at least one first light-emitting diode (LED), and at least one second LED. The first LED is disposed on a surface of the substrate. The first LED has a first reflection surface and a first light-outlet surface that are opposite to each other, and the first light-outlet surface is away from the substrate relative to the first reflection surface. The second LED is disposed on the same surface of the substrate. The second LED has a second reflection surface and a second light-outlet surface that are opposite to each other, and the second light-outlet surface is close to the substrate relative to the second reflection surface. The substrate has at least one light-transparent area that is not occupied by the first LED and the second LED.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: January 3, 2023
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Ting-Wei Guo, Chen-Chi Lin, Pin-Miao Liu, Cheng-Chieh Chang, Ho-Cheng Lee, Wen-Wei Yang
  • Publication number: 20220377876
    Abstract: A board, including a first pad area, a second pad area, a first micro heater, a second micro heater, a first heater terminal pad, a second heater terminal pad, and a third heater terminal pad, is provided. The first pad area and the second pad area respectively include at least one pad. The first micro heater and the second micro heater are respectively disposed corresponding to the first pad area and the second pad area. The first heater terminal pad and the second heater terminal pad form a loop with the first micro heater by being electrically connected to an outside, so that the first micro heater generates heat. The second heater terminal pad and the third heater terminal pad form another loop with the second micro heater by being electrically connected to the outside, so that the second micro heater generates heat. A circuit board and a fixture are also provided.
    Type: Application
    Filed: January 27, 2022
    Publication date: November 24, 2022
    Applicant: Skiileux Electricity Inc.
    Inventors: Shang-Wei Tsai, Cheng Chieh Chang, Te Fu Chang
  • Publication number: 20220322519
    Abstract: A board, including a pad layer, a micro heater layer, and an insulating layer which are laminated, is provided. The pad layer includes a pad. The micro heater layer includes a micro heater. The micro heater is disposed corresponding to the pad. The insulating layer is located between the pad layer and the micro heater layer. A resistance value of the micro heater ranges from 10 ? to 500 ?. A circuit board is also provided.
    Type: Application
    Filed: December 3, 2021
    Publication date: October 6, 2022
    Applicant: Skiileux Electricity Inc.
    Inventors: Shang-Wei Tsai, Cheng Chieh Chang, Te Fu Chang
  • Publication number: 20210391516
    Abstract: A light emitting device including a substrate, a first pad, a second pad, a light emitting diode, a first connection structure, a second connection structure, and a patterned adhesive layer and a method for manufacturing the same are provided. The first pad and the second pad are located on the substrate. The light emitting diode includes a first semiconductor layer, a second semiconductor layer overlapping the first semiconductor layer, a first electrode and a second electrode. The first electrode and the second electrode are respectively connected to the first semiconductor layer and the second semiconductor layer. The first connection structure electrically connects the first electrode to the first pad. The second connection structure electrically connects the second electrode to the second pad. The patterned adhesive layer is located between the substrate and the light emitting diode and does not contact the first connection structure and the second connection structure.
    Type: Application
    Filed: November 20, 2020
    Publication date: December 16, 2021
    Applicant: Au Optronics Corporation
    Inventors: Fang-Cheng Yu, Cheng-Chieh Chang, Cheng-Yeh Tsai
  • Publication number: 20210384376
    Abstract: A chip-detecting method, a chip-detecting structure and a chip-carrying structure are provided. The chip-detecting method includes providing a chip-detecting structure including a plurality of micro heater groups, a chip-carrying structure for carrying a plurality of chips, and a plurality of soldering material groups disposed between the chip-carrying structure and the chip-detecting structure; placing the chip-carrying structure and the chip-detecting structure adjacent to each other, so that each of the soldering material groups simultaneously contact the chip-carrying structure and the chip-detecting structure; respectively curing the low-temperature soldering material groups by heating of the micro heater groups, so that the chips are electrically connected to the chip-detecting structure respectively through the low-temperature soldering material groups that have been cured; and then detecting the chips so as to divide the chips into a plurality of good chips and a plurality of bad chips.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 9, 2021
    Inventors: CHIEN-SHOU LIAO, Cheng-Chieh Chang