Patents by Inventor Cheng-Hsien Liu

Cheng-Hsien Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240177893
    Abstract: An over-current protection device includes a heat-sensitive layer and an electrode layer. The electrode layer includes a top metal layer and a bottom metal layer, and the heat-sensitive layer attached therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a polymer matrix and a conductive filler. The polymer matrix includes a polyolefin-based homopolymer and a polyolefin-based copolymer. The polyolefin-based homopolymer has a first coefficient of thermal expansion (CTE), and the polyolefin-based copolymer has a second CTE lower than the first CTE. The polyolefin-based homopolymer and the polyolefin-based copolymer together form an interpenetrating polymer network (IPN).
    Type: Application
    Filed: May 3, 2023
    Publication date: May 30, 2024
    Inventors: CHENG-YU TUNG, Chia-Yuan Lee, HSIU-CHE YEN, CHEN-NAN LIU, YUNG-HSIEN CHANG, Yao-Te Chang, FU-HUA CHU, Takashi Hasunuma
  • Patent number: 11990258
    Abstract: An over-current protection device includes first and second electrode layers and a PTC material layer laminated therebetween. The PTC material layer includes a polymer matrix, a conductive filler, and a titanium-containing dielectric filler. The polymer matrix has a fluoropolymer. The titanium-containing dielectric filler has a compound represented by a general formula of MTiO3, wherein the M represents transition metal or alkaline earth metal. The total volume of the PTC material layer is calculated as 100%, and the titanium-containing dielectric filler accounts to for 5-15% by volume of the PTC material layer.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: May 21, 2024
    Assignee: POLYTRONICS TECHNOLOGY CORP.
    Inventors: Hsiu-Che Yen, Yung-Hsien Chang, Cheng-Yu Tung, Chen-Nan Liu, Chia-Yuan Lee, Yu-Chieh Fu, Yao-Te Chang, Fu-Hua Chu
  • Publication number: 20240161998
    Abstract: A deflecting plate includes a silicon-on-insulator (SOI) substrate. The SOI substrate includes: an insulator layer having a top surface and a bottom surface; a device layer coupled to the insulator layer at the top surface, wherein multiple deflecting apertures are disposed in the device layer, each of which extending from a top open end to a bottom open end through the device layer, and wherein the bottom open end is coplanar with the top surface of the insulator layer; and a handle substrate coupled to the insulator layer at the bottom surface, wherein a cavity is disposed in the handle substrate and extends from a cavity open end to a cavity bottom wall, and wherein the bottom wall is coplanar with the top surface of the insulator layer, such that the bottom open end of each deflecting aperture is exposed to the cavity.
    Type: Application
    Filed: September 10, 2023
    Publication date: May 16, 2024
    Inventors: Cheng-Hsien Chou, Yung-Lung Lin, Chun Liang Chen, Kuan-Liang Liu, Chin-Yu Ku, Jong-Yuh Chang
  • Publication number: 20240157801
    Abstract: A method for estimating a flight time of a hydrogen fuel cell UAV (unmanned aerial vehicle) includes multiple steps performed by a controller: obtaining an internal pressure of a hydrogen tank by a pressure sensor installed on the hydrogen tank, calculating a remaining hydrogen volume according to the internal pressure and a capacity of the hydrogen tank, obtaining a reaction current value of the fuel cell, calculating a first hydrogen consumption rate according to the reaction current value, the number of a set of membrane electrodes connected in series and a Faraday constant, obtaining a second hydrogen consumption rate of a purge operation of an anode of the full cell; obtaining a hydrogen leakage rate of a stack of the fuel cell, and calculating the flight time according to the remaining hydrogen volume, the first hydrogen consumption rate, the second hydrogen consumption rate and the hydrogen leakage rate.
    Type: Application
    Filed: May 18, 2023
    Publication date: May 16, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ching-Jung LIU, Yuh-Fwu CHOU, Ku-Yen KANG, Yin-Wen TSAI, Ching-Fang HO, Cheng-Hsien YU
  • Publication number: 20240145132
    Abstract: An over-current protection device includes first and second electrode layers and a PTC material layer laminated therebetween. The PTC material layer includes a polymer matrix, and a conductive filler. The polymer matrix has a fluoropolymer. The total volume of the PTC material layer is calculated as 100%, and the fluoropolymer accounts for 47-62% by volume of the PTC material layer. The fluoropolymer has a melt viscosity higher than 3000 Pa·s.
    Type: Application
    Filed: March 16, 2023
    Publication date: May 2, 2024
    Inventors: CHENG-YU TUNG, CHEN-NAN LIU, Chia-Yuan Lee, HSIU-CHE YEN, YUNG-HSIEN CHANG, Yao-Te Chang, FU-HUA CHU
  • Publication number: 20240145133
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a polymer matrix and a first conductive filler. The polymer matrix includes a polyolefin-based polymer and a fluoropolymer. The fluoropolymer has a melt flow index higher than 1.9 g/10 min, and the polyolefin-based polymer and the fluoropolymer together form an interpenetrating polymer network (IPN). The first conductive filler has a metal-ceramic compound dispersed in the polymer matrix.
    Type: Application
    Filed: April 5, 2023
    Publication date: May 2, 2024
    Inventors: CHEN-NAN LIU, YUNG-HSIEN CHANG, CHENG-YU TUNG, HSIU-CHE YEN, Chia-Yuan LEE, Yao-Te CHANG, FU-HUA CHU
  • Publication number: 20240127988
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a first polymer and a conductive filler. The first polymer consists of polyvinylidene difluoride (PVDF), and PVDF exists in different phases such as ?-PVDF, ?-PVDF and ?-PVDF. The total amount of ?-PVDF, ?-PVDF and ?-PVDF is calculated as 100%, and the amount of ?-PVDF accounts for 48% to 55%. The conductive filler has a metal-ceramic compound.
    Type: Application
    Filed: March 2, 2023
    Publication date: April 18, 2024
    Inventors: HSIU-CHE YEN, YUNG-HSIEN CHANG, CHENG-YU TUNG, Chia-Yuan Lee, CHEN-NAN LIU, Yao-Te Chang, FU-HUA CHU
  • Publication number: 20240123479
    Abstract: A recycling apparatus for a solar cell module includes a platform for supporting and positioning the solar cell module, and at least one milling device disposed on the platform and having a milling member configured to contact a back plate of the solar cell module, and a casing defining a chip-receiving space and having an air inlet and a suction port communicating with the chip-receiving space. A drive device is connected to the at least one milling device for driving the at least one milling device to move around and mill the solar cell module through the milling member.
    Type: Application
    Filed: October 28, 2021
    Publication date: April 18, 2024
    Applicant: NATIONAL UNIVERSITY OF TAINAN
    Inventors: Yao-Hsien FU, Hsueh-Pin TAI, Chia-Tsung HUNG, Cheng-Chen LIU, Chun-Chih HU, How-Wei KE
  • Publication number: 20240127989
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a first polymer and a conductive filler. The first polymer consists of polyvinylidene difluoride (PVDF), and PVDF exists in different phases such as ?-PVDF, ?-PVDF and ?-PVDF. The total amount of ?-PVDF, ?-PVDF and ?-PVDF is calculated as 100%, and the amount of ?-PVDF accounts for 33% to 42%.
    Type: Application
    Filed: January 25, 2023
    Publication date: April 18, 2024
    Inventors: CHIA-YUAN LEE, CHENG-YU TUNG, HSIU-CHE YEN, CHEN-NAN LIU, YUNG-HSIEN CHANG, YAO-TE CHANG, FU-HUA CHU
  • Patent number: 11962426
    Abstract: An Ethernet power supply receives a DC voltage through a bus positive terminal and a bus negative terminal, and is coupled to a load device. The Ethernet power supply includes a first control module and a second control module. The first control module is used to provide a first control signal through the bus negative terminal to confirm whether the load device is a valid load. The second control module is used to connect or disconnect a coupling relationship between the bus positive terminal and the first control module according to the load device being connected or not.
    Type: Grant
    Filed: May 25, 2022
    Date of Patent: April 16, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Yung-Wei Peng, Kuan-Hsien Tu, Cheng-En Liu
  • Publication number: 20240118178
    Abstract: A staining kit is provided, including a first pattern including antibodies against T cell, B cell, NK cell, monocyte, regulatory cell, CD8, CD45, and CTLA4; a second pattern including antibodies against T cell, B cell, NK cell, monocyte, regulatory cell, dendritic cell, and CD45; a third pattern including antibodies against T cell, B cell, NK cell, monocyte, CD8, CD45, CD45RA, CD62L, CD197, CX3CR1 and TCR??; and a fourth pattern including antibodies against B cell, CD23, CD38, CD40, CD45 and IgM, wherein the antibodies of each pattern are labeled with fluorescent dyes. A method of identifying characterized immune cell subsets of a disease and a method of predicting the likelihood of NPC in a subject in the need thereof using the staining kit are also provided.
    Type: Application
    Filed: October 5, 2022
    Publication date: April 11, 2024
    Applicant: FULLHOPE BIOMEDICAL CO., LTD.
    Inventors: Jan-Mou Lee, Li-Jen Liao, Yen-Ling Chiu, Chih-Hao Fang, Kai-Yuan Chou, Pei-Hsien Liu, Cheng-Yun Lee
  • Patent number: 11953964
    Abstract: An Ethernet power supply receives a DC voltage through a bus positive terminal and a bus negative terminal, and is coupled to a load device. The Ethernet power supply includes a first control module and a second control module. The first control module provides a first control signal through the bus negative terminal to confirm whether the load device is a valid load. The second control module is used to connect or disconnect a coupling relationship between the bus positive terminal and the first control module according to whether the load device is connected to the Ethernet power supply.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: April 9, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Yung-Wei Peng, Kuan-Hsien Tu, Cheng-En Liu
  • Patent number: 11935871
    Abstract: A semiconductor package including a first semiconductor die, a second semiconductor die, a first insulating encapsulation, a dielectric layer structure, a conductor structure and a second insulating encapsulation is provided. The first semiconductor die includes a first semiconductor substrate and a through silicon via (TSV) extending from a first side to a second side of the semiconductor substrate. The second semiconductor die is disposed on the first side of the semiconductor substrate. The first insulating encapsulation on the second semiconductor die encapsulates the first semiconductor die. A terminal of the TSV is coplanar with a surface of the first insulating encapsulation. The dielectric layer structure covers the first semiconductor die and the first insulating encapsulation. The conductor structure extends through the dielectric layer structure and contacts with the through silicon via.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Yi Tsai, Cheng-Chieh Hsieh, Tsung-Hsien Chiang, Hui-Chun Chiang, Tzu-Sung Huang, Ming-Hung Tseng, Kris Lipu Chuang, Chung-Ming Weng, Tsung-Yuan Yu, Tzuan-Horng Liu
  • Patent number: 11712696
    Abstract: A drug screening platform simulating hyperthermic intraperitoneal chemotherapy including a dielectrophoresis system, a microfluidic chip and a heating system is disclosed. The dielectrophoresis system is used to provide a dielectrophoresis force. The microfluidic chip includes a cell culture array and observation module and a drug mixing module. The cell culture array and observation module are used to arrange the cells into a three-dimensional structure through the dielectrophoresis force to construct a three-dimensional tumor microenvironment. The drug mixing module is coupled to the cell culture array and observation module and used to automatically split and mix the inputted drugs and output the drug combinations into the cell culture array and observation module.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: August 1, 2023
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Te-Yu Chao, Yu-Ching Tung, Mao-Chih Hsieh, Yu-Ting Tai, Bing-Ying Ho, Wei-Chia Chang, Sung-Yang Wei, Chang-Hung Hsieh, Chung-Cheng Chou, Jen-Tsan Chi, Long Hsu, Hwan-You Chang, Huang-Ming Philip Chen, Cheng-Hsien Liu
  • Patent number: 11609185
    Abstract: A portable ring-type fluorescence optical system for observing microfluidic channel and an operating method thereof are disclosed. The portable ring-type fluorescence optical system includes a photographic chip, a first polarizer, an objective lens, a ring-type fluorescent light source, a biological sample on a microfluidic chip, a second polarizer and a bottom illumination light source arranged in order from top to bottom. The ring-type fluorescent light source is used to generate a ring-type fluorescent light to the biological sample on the microfluidic chip. The objective lens is used to magnify a fluorescent image of the biological sample on the microfluidic chip to focus on the photographic chip. The first polarizer disposed under the photographic chip and the second polarizer disposed under the biological sample form a non-zero angle to each other to block reflected lights that the biological sample reflects the lights emitted by the bottom illumination light source.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: March 21, 2023
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Sung-Yang Wei, Long Hsu, Hwan-You Chang, Huang-Ming Chen, Jen-Tsan Chi, Chung-Cheng Chou, Yuh-Cherng Lai, Hung-Yu Yeh, Ting-Chou Wei, Yun-Ting Yao, Cheng-Hsien Liu
  • Publication number: 20230039490
    Abstract: A lung breathing chip and cell stretching culture platform and an operating method thereof are disclosed. The lung breathing chip and cell stretching culture platform controls the output of the motor by programming, stretches the micro-fluidic chip by the cam component, changes the size of the cam component and the frequency of the motor rotation to change the stretching frequency and the amount of stretching to simulate the breathing of the lungs in different states, uses liquid electrophoresis technology to arrange the cells in the biocompatible hydrogel and the hydrogel three-dimensionally to imitate the three-dimensional cell tissue, and injects drugs through the dynamic perfusion system to realize the drug testing platform that the cells of the chip bionic lung tissue are stretched.
    Type: Application
    Filed: August 9, 2021
    Publication date: February 9, 2023
    Applicants: NATIONAL TSING HUA UNIVERSITY, TAIPEI MEDICAL UNIVERSITY
    Inventors: Cheng-Yu HUANG, Chun-Hui SUNG, Pin-Tzu LAI, Chia-Ming HSU, Yi-Ying LIANG, Kang-Yun LEE, Shu-Chuan HO, Weilun SUN, Cheng-Hsien LIU
  • Publication number: 20220401956
    Abstract: A drug screening platform simulating hyperthermic intraperitoneal chemotherapy including a dielectrophoresis system, a microfluidic chip and a heating system is disclosed. The dielectrophoresis system is used to provide a dielectrophoresis force. The microfluidic chip includes a cell culture array and observation module and a drug mixing module. The cell culture array and observation module are used to arrange the cells into a three-dimensional structure through the dielectrophoresis force to construct a three-dimensional tumor microenvironment. The drug mixing module is coupled to the cell culture array and observation module and used to automatically split and mix the inputted drugs and output the drug combinations into the cell culture array and observation module.
    Type: Application
    Filed: August 5, 2021
    Publication date: December 22, 2022
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Te-Yu CHAO, Yu-Ching TUNG, Mao-Chih HSIEH, Yu-Ting TAI, Bing-Ying HO, Wei-Chia CHANG, Sung-Yang WEI, Chang-Hung HSIEH, Chung-Cheng CHOU, Jen-Tsan CHI, Long HSU, Hwan-You CHANG, Huang-Ming Philip CHEN, Cheng-Hsien LIU
  • Publication number: 20220395830
    Abstract: An array platform for three-dimensional cell culturing and drug testing and screening is disclosed. In the array platform, a hydrogel-cell mixture injection area is configured to inject a plurality of kinds of hydrogel-cell mixtures. Cell observation areas are connected to the hydrogel-cell mixture injection area. Electrodes are disposed under the cell observation areas and automatic cell quantification and three-dimensional cell co-arrangement of the plurality of kinds of hydrogel-cell mixtures in the cell observation areas through the electrodes to imitate a structure of body's tissues. A drug injection area is configured to inject a plurality of kinds of drugs. Drug combination generators respectively correspond to the cell observation areas and are connected to the drug injection area. Each drug combination generator has a microfluidic channel structure and configured to generate drug combinations according to the plurality of kinds of drugs.
    Type: Application
    Filed: August 3, 2021
    Publication date: December 15, 2022
    Applicants: NATIONAL TSING HUA UNIVERSITY, TAIPEI MEDICAL UNIVERSITY
    Inventors: Yu-Chen CHEN, Han-Jung LIAO, Kang-Yun LEE, Shu-Chuan HO, Weilun SUN, Cheng-Hsien LIU
  • Publication number: 20220364995
    Abstract: A portable ring-type fluorescence optical system for observing microfluidic channel and an operating method thereof are disclosed. The portable ring-type fluorescence optical system includes a photographic chip, a first polarizer, an objective lens, a ring-type fluorescent light source, a biological sample on a microfluidic chip, a second polarizer and a bottom illumination light source arranged in order from top to bottom. The ring-type fluorescent light source is used to generate a ring-type fluorescent light to the biological sample on the microfluidic chip. The objective lens is used to magnify a fluorescent image of the biological sample on the microfluidic chip to focus on the photographic chip. The first polarizer disposed under the photographic chip and the second polarizer disposed under the biological sample form a non-zero angle to each other to block reflected lights that the biological sample reflects the lights emitted by the bottom illumination light source.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 17, 2022
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Sung-Yang WEI, Long HSU, Hwan-You CHANG, Huang-Ming CHEN, Jen-Tsan CHI, Chung-Cheng CHOU, Yuh-Cherng LAI, Hung-Yu YEH, Ting-Chou WEI, Yun-Ting YAO, Cheng-Hsien LIU
  • Patent number: D1018527
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: March 19, 2024
    Assignee: COMPAL ELECTRONICS, INC.
    Inventors: Han-Tsai Liu, Jyh-Chyang Tzou, Cheng-Shiue Jan, Yao-Hsien Yang, Pai-Feng Chen, I-Hao Chen